Skip to main content
Log in

QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype.

Abstract

Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References.

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    CAS  PubMed  Google Scholar 

  • Bettinger RL, Barton L, Morgan C (2010) The origins of food production in north china: a different kind of agricultural revolution. Evol Anthropol 19:9–21

    Google Scholar 

  • Cassani E, Bertolini E, Badone CF, Landoni M, Gavina D, Sirizzotti A, Pilu R (2009) Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed 24:375–385

    CAS  Google Scholar 

  • Cheng R, Liu Z, Shi Z, Xia X, Yang W (2006) Breeding of foxtail millet cultivar Jigu19. J Hebei Agron Sci 10:80–81 (In Chinese)

    Google Scholar 

  • Diao X (2016) Production and genetic improvement of minor cereals in China. Crop J 5:103–114

    Google Scholar 

  • Diao X, Cheng R (2017) Current breeding situation of foxtail millet and common millet in china as revealed by exploitation of 15 years regional adaptation test data. Sci Agric Sin 50(23):4469–4474

    Google Scholar 

  • Diao X, Jia G (2017) Foxtail millet breeding in China. In: Diao X (ed) Doust A. Genetics and genomics of setaria. plant genetics and genomics, Crops and Models, Springer, Cham, pp 93–113

    Google Scholar 

  • Diao X, Schnable J, Bennetzen JL, Jiayang L (2014) Initiation of Setaria as a model plant. Front Agr Sci Eng 1:16–20

    Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun T-P (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doust A, Kellogg E, Devos K, Bennetzen J (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LT (1998) Feeding the ten billion plant and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Evenson Gollin RD (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762

    PubMed  Google Scholar 

  • Fan X, Tang S, Zhi H, He M, Ma W, Jia Y, Zhao B, Jia G, Diao X (2017) Identification and fine mapping of SiDWARF (D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet. Crop Sci 57:2431–2442

    CAS  Google Scholar 

  • Fang X, Dong K, Wang X, Liu T, He J, Ren R, Zhang L, Liu R, Liu X, Li M, Huang M, Zhang Z, Yang TJBG (2016) A high density genetic map and QTL for agronomic and yield traits in Foxtail millet Setaria italica L P. Beauv. BMC Genom 17:336. https://doi.org/10.1186/s12864-016-2628-z

    Article  CAS  Google Scholar 

  • Feldman MJ, Paul RE, Banan D, Barrett JF, Genetics IBJP (2016) Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet 13:e1006841

    Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1988) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85:9031–9035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    CAS  PubMed  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant cell 17:2243–2254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    CAS  PubMed  Google Scholar 

  • Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118:821–829

    CAS  PubMed  Google Scholar 

  • Kir G, Ye H, Nelissen H, Neelakandan AK, Kusnandar AS, Luo A, Inzé D, Sylvester AW, Yin Y, Becraft PW (2015) RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol 169:826–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang L, Liu M, Dong Z, Li Q, Fei S, Xiang H, Liu B, Jin W (2020) Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol 183:1184–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Sun W, Cheng Y (2005) Breeding report of a new high-yield and quality millet variety Liaogu 1. Rain fed crops 25:307–307 (In Chinese)

    CAS  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    CAS  PubMed  Google Scholar 

  • Li S, Hu X, Li J, Wang Y (2010) Breeding and cultivation techniques of a new high-quality, dwarf foxtail millet variety Gongai 6. China Sci Technol Adv 11:11–11 (In Chinese)

    Google Scholar 

  • Liu X, Gao S, Yang M, Li J (2005) Selection of a good quality high yield and new type foxtail millet variety Gongai 2. Hortic Seed 25:305–306 (In Chinese)

    CAS  Google Scholar 

  • Liu XT, Tang S, Jia GQ, Schnable JC, Su HX, Tang CJ, Zhi H, Diao XM (2016) The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv). J Exp Bot 67:3237–3249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zhang J, Liu K, Wu N, Li Y, Zhou K, Ye M, Zhang T, Zhang H, Yang X, Shen L, Xu D, Li Q (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA 106:7367–7372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P (2006) Criteria for descriptions of morphological characteristics of foxtail millet germplasm. China Agricultural Press, Beijing (In Chinese)

    Google Scholar 

  • Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D (2019) The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132:751–766

    PubMed  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    CAS  PubMed  Google Scholar 

  • Ni X, Xia Q, Zhang H, Cheng S, Li H, Fan G, Guo T, Huang P, Xiang H, Chen Q, Li N, Zou H, Cai X, Lei X, Wang X, Zhou C, Zhao Z, Zhang G, Du G, Cai W, Quan Z (2017) Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Giga Sci 6:1–8

    Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Google Scholar 

  • Qian J, Jia G, Hui Z, Wei L, Wang Y, Li H, Shang Z, Doust AN, Diao X (2012) Sensitivity to gibberellin of dwarf foxtail millet varieties. Crop Sci 52:1068–1075

    CAS  Google Scholar 

  • Quinby JR, Karper PE (1954) Inheritance of height in sorghum. In abstracts of the annual meetings of the American society of agronomy, Dallas, Texas 98–99

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush S, G, Kitano H, Matsuoka M, (2002) A mutant gibberellin–synthesis gene in rice. Nature 416:701–702

    CAS  PubMed  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    CAS  PubMed  Google Scholar 

  • Schomburg F, Bizzell M, C, Lee DJ, A D Zeevaart J, M Amasino R, (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable J, Zang Y, Ngu DWC (2016) Pan-grass syntenic gene set sorghum reference. figshare https://doi.org/10.6084/m9.figshare.3113488.v1

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345

    CAS  PubMed  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11 with reduced seed length. Plant Cell 17(3):776–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416

    CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T, Hsing Y, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    CAS  PubMed  Google Scholar 

  • Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet Setaria italica L P. Beauv. using RAD-seq. PLoS ONE. https://doi.org/10.1371/journal.pone.0179717

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Xie H, Xing L, Wei M, Wang S, Liu H (2016) Breeding of a high quality and yield variety yugu25 derived from xiagu. China Seed Ind 11:58–59 (In Chinese)

    Google Scholar 

  • Wang Z, Wang J, Peng J, Du X, Jiang M, Li Y, Han F, Du G, Yang H, Lian S, Yong J, Cai W, Cui J, Han K, Yuan F, Chang F, Yuan G, Zhang W, Zhang L, Peng S, Zou H, Guo E (2019) QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet Setaria italica L. P Beauv Mol Breed. https://doi.org/10.1007/s11032-019-0930-6

    Article  Google Scholar 

  • Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Jiang H (1994) The first upright leaf foxtail millet cultivar-Ai88. Beijing Agric 026:18–19 (In Chinese)

    Google Scholar 

  • Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot 66:3791–3802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Zhi H, Fang X, Liu X, Tang S, Chai Y, Zhao B, Jia G, Diao X (2016) Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci 56:95–103

    CAS  Google Scholar 

  • Zhang K, Fan G, Zhang X, Zhao F, Wei W, Du G, Feng X, Wang X, Wang F, Song G, Zou H, Zhang X, Li S, Ni X, Zhang G, Zhao Z (2017) Identification of QTLs for agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3-Gene Gen Genet 7(5):1587–1594

    CAS  Google Scholar 

  • Zhao M, Zhi H, Zhang X, Jia G, Diao X (2019) Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J 7:458–468

    Google Scholar 

Download references

Acknowledgement

We thank Dr. Kun Xie helped in data analysis. This research was supported by the National Key R&D Program of China (2018YFD1000706, 2018YFD1000700), the National Natural Science Foundation of China (31871630, 31771807), China agricultural research system (CARS-06-13.5) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Funding

This research was supported by the National Key R&D Program of China (2018YFD1000706, 2018YFD1000700), the National Natural Science Foundation of China (31871630, 31771807), China Agricultural Research System (CARS-06–13.5) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Contributions

QH and HZ did data analysis and drafted the manuscript. Xd and HZ designed the experiment, developed the RIL population, and revised the manuscript. Jun Liu helped in the data analysis and discussion. ST, LX, SW, HW, AZ, YL, MG, HZ, GC, SD, JL, JY, HL, WZ, YJ, SL, JL, ZQ, EG, and GJ collected the phenotype. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xianmin Diao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Communicated by Ian D Godwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zhi, H., Tang, S. et al. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet 134, 557–572 (2021). https://doi.org/10.1007/s00122-020-03714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03714-w

Navigation