Skip to main content

Advertisement

Log in

QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The legendary cucumber inbred line WI2757 possesses a rare combination of resistances against nine pathogens, which is an important germplasm for cucumber breeding. However, WI2757 flowers late and does not perform well under field conditions. The genetic basis for horticulturally important traits other than disease resistances in WI2757 is largely unknown. In this study, we conducted QTL mapping using F2 and recombinant inbred line (RIL) populations from the WI2757 × True Lemon cross that were segregating for multiple traits. Phenotypic data were collected in replicated field trials across multiple years for seven traits including fruit carpel number (CN) and sex expression. A high-density SNP-based genetic map was developed with genotyping by sequencing of the RIL population, which revealed a region on chromosome 1 with strong recombination suppression. The reduced recombination in this region was due to a ~ 10-Mbp paracentric inversion in WI2757 that was confirmed with additional segregation and cytological (FISH) analyses. Thirty-six QTL were detected for flowering time, fruit length (FL), fruit diameter (FD), fruit shape (LD), fruit number (FN), CN, and powdery mildew resistance. Five moderate- or major-effect QTL for FL, FD, LD, and FN inside the inversion are likely the pleiotropic effects of the andromonoecy (m), or the cn locus. The major-effect flowering time QTL ft1.1 was also mapped inside the inversion, which seems to be different from the previously assigned delayed flowering in WI2757. Implications of these findings on the use of WI2757 in cucumber breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data pertinent to the reported work have been provided in the manuscript or in the supplemental online materials.

References

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    CAS  PubMed  Google Scholar 

  • Berg JA, Appiano M, Santillán Martínez M, Hermans FW, Vriezen WH, Visser RG, Bai Y, Schouten HJ (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243

    PubMed  PubMed Central  Google Scholar 

  • Bo K, Ma Z, Chen J, Weng Y (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 128:25–39

    CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  PubMed  Google Scholar 

  • Chung S-M, Staub JE, Fazio G (2003) Inheritance of chilling injury: a maternally inherited trait in cucumber. J Am Soc Hortic Sci 128:526–530

    CAS  Google Scholar 

  • Della Vecchia PT, Peterson CE, Staub JE (1982) Effect of the duration of short-day treatment on the flowering response of a Cucumis sativus var. hardwickii (R.) Alef. line. Cucurbit Genet Coop Rep 5:2–3

    Google Scholar 

  • Della Vecchia PT, Peterson CE, Staub JE (1984) Inheritance of flowering responses in cucumber. J Am Soc Hortic Sci 109:761–763

    Google Scholar 

  • Dobzhansky T (1947) Adaptive changes induced by natural selection in wild populations of Drosophila. Evol Int J Org Evol 1:1–16

    Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Fang Z, Pyhajarvi T, Weber AL, Dawe RK, Glaubitz JC, de Gonzalez J, Ross-Ibarra C, Doebley J, Morrell PL, Ross-Ibarra J (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191:883–894

    PubMed  PubMed Central  Google Scholar 

  • Fanourakis NE, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Fransz P, Linc G, Lee CR, Aflitos SA et al (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J 88:159–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • He XM, Li YH, Pandey S, Yandell BS, Pathak M, Weng YQ (2013) QTL mapping of powdery mildew resistance in WI2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    CAS  PubMed  Google Scholar 

  • Horejsi T, Staub JE, Thomas C (2000) Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115:105–113

    CAS  Google Scholar 

  • Huang Y-C, Dang VD, Chang N-C, Wang J (2018) Multiple large inversions and breakpoint rewiring of gene expression in the evolution of the fire ant social supergene. Proc R Soc B 285:20180221

    PubMed  PubMed Central  Google Scholar 

  • Iezzoni AF, Peterson CE (1980) Linkage of bacterial wilt resistance and sex expression in cucumber. HortScience 15:257–258

    Google Scholar 

  • Kang HX, Weng Y, Yang YH, Zhang ZH, Zhang SP et al (2010) Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor Appl Genet 122:795–803

    PubMed  Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Kirkpatrick M (2010) How and why chromosome inversions evolve? PLoS Biol 8:e1000501

    PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YW, Fishman L, Kelly JK, Willis JH (2016) A Segregating inversion generates fitness variation in yellow monkeyflower (Mimulus guttatus). Genetics 202:1473–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Pan YP, Wen CL, Li YH, Liu XF, Zhang XL, Behera TK, Xing GM, Weng YQ (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theor Appl Genet 129:1007–1022

    PubMed  Google Scholar 

  • Li Z, Han YH, Niu HH, Wang YH, Jiang B, Weng Y (2020) Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent femaleness (F) locus. Hortic Res 7:32. https://doi.org/10.1038/s41438-020-0251-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8:e1000500

    PubMed  PubMed Central  Google Scholar 

  • Lv H, Lin T, Klein J, Wang S, Zhou Q, Sun J, Weng Y, Huang S (2014) QTL-Seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Google Scholar 

  • Mao AJ, Zhang F, Zhang LR, Wang YJ (2008) Analysis on the inheritance of resistance to Fusarium wilt race 4 and scab and their linkage in WI2757 cucumber. Sci Agric Sin 41:3382–3388

    CAS  Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY (2012) Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin 39:879–887

    CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    CAS  PubMed  Google Scholar 

  • Muños S, Ranc N, Botton E et al (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    PubMed  PubMed Central  Google Scholar 

  • Nie J, He HL, Peng JL, Yang XQ, Bie BB, Zhao JL, Wang YL, Si LT, Pan JS, Cai R (2015a) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7

    Google Scholar 

  • Nie J, Wang YL, He HL, Guo CL, Zhu WY, Pan J, Li DD, Lian HL, Pan JS, Cai R (2015b) Loss-of-Function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1–14

    CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    CAS  PubMed  Google Scholar 

  • Olczak-Woltman H, Masny A, Bartoszewski G, Płucienniczak A, Niemirowicz-Szczytt K (2007) Genetic diversity of Pseudomonas syringae pv. lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathol 56:373–382

    CAS  Google Scholar 

  • Pan YP, Liang XJ, Gao ML, Liu HQ, Meng HW, Weng YQ, Cheng ZH (2017a) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    CAS  PubMed  Google Scholar 

  • Pan YP, Qu SP, Bo KL, Gao ML, Haider KR, Weng YQ (2017b) QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor Appl Genet 130:1531–1548

    CAS  PubMed  Google Scholar 

  • Pan JS, Tan JY, Wang YH, Zheng XY, Owens K, Li DW, Li YH, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor Appl Genet 131:1577–1587

    CAS  PubMed  Google Scholar 

  • Pan YP, Wang YH, McGregor C, Liu S, Luan FS, Gao ML, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941

    CAS  PubMed  Google Scholar 

  • Peterson CE, Williams PH, Palmer M, Louward P (1982) Wisconsin 2757 cucumber. HortScience 17:268

    Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H, Xie B, Gu X, Wang X, Du Y, Jin W, Huang S (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwander T, Libbrecht R, Keller L (2014) Supergenes and complex phenotypes. Curr Biol 24:R288–R294

    CAS  PubMed  Google Scholar 

  • Sheng YS, Pan YP, Li YH, Yang LM, Weng Y (2019) Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus L.). Plant Breed. https://doi.org/10.1111/pbr.12754

    Article  Google Scholar 

  • Shifriss O, George WL Jr (1965) Delayed germination and flowering in cucumbers. Nature 206:424–425

    Google Scholar 

  • Słomnicka R, Olczak-Woltman H, Korzeniewska A, Niemirowicz-Szczytt K, Bartoszewski G (2016) Evaluation of a cucumber RILs population for resistance to angular leaf spot. In: Kozik EU, Paris HS (eds) Proceeding of cucurbitaceae 2016, 11th EUCARPIA meeting on genetics and breeding of cucurbitaceae. Warsaw, Poland, pp 231–233

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H et al (2013) SLAF-Seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Tao Q, Niu H, Zhang Z, Li D, Gong Z, Weng Y, Li Z (2015) A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theor Appl Genet 128:2483–2493

    CAS  PubMed  Google Scholar 

  • Thomas A, Carbone I, Choe K, Quesada-Ocampo LM, Ojiambo PS (2017) Resurgence of cucurbit downy mildew in the United States: insights from comparative genomic analysis of Pseudoperonospora cubensis. Ecol Evol 7:6231–6246

    PubMed  PubMed Central  Google Scholar 

  • Thompson MJ, Jiggins CD (2014) Supergenes and their role in evolution. Heredity 113:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vakalounakis DJ (1993) Inheritance and genetic linkage of Fusarium wilt (Fusarium oxysporum f.sp. cucumerinum race 1) and scab (Cladosporiurn cucumerinum) resistance genes in cucumber (Cucumis sativus). Ann Appl Biol 123:359–365

    Google Scholar 

  • Vakalounakis DJ (1995) Inheritance and linkage of resistance in cucumber line SMR-18 to races 1 and 2 of Fusarium oxysporum f.sp. cucumerinurn. Plant Pathol 44:169–172

    Google Scholar 

  • Walters A, Shetty N, Wehner TC (2001) Segregation and linkage of several genes in cucumber. J Am Soc Hortic Sci 126:442–450

    CAS  Google Scholar 

  • Wang YH, VandenLangenberg K, Wehner TC, Kraan PA, Suelmann J, Zheng X, Owens K, Weng Y (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    CAS  PubMed  Google Scholar 

  • Wang YH, VandenLangenberg K, Wen CL, Wehner TC, Weng YQ (2018) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611

    CAS  PubMed  Google Scholar 

  • Wang YH, Tan JY, Wu ZM, VandenLangenberg K, Wehner TC, Wen CL, Zheng XY, Owens K, Thornton A, Bang HH, Hoeft E, Kraan PAG, Suelmann J, Pan JS, Weng Y (2019a) STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytol 221:415–430

    CAS  PubMed  Google Scholar 

  • Wang SH, Li HB, Li YY, Li Z, Qi JJ, Lin T, Yang XY, Zhang ZH, Hang SW (2019b) FLOWERING LOCUS T Improved cucumber adaptation to higher latitudes. Plant Physiol. https://doi.org/10.1104/pp.19.01215

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Bo KL, Gu XF, Pan JS, Li YH, Chen JF, Wen CL, Ren ZH, Ren HZ, Chen XH, Grumet R, Weng Y (2020) Molecularly tagged genes and quantitative trait loci in cucumber—and recommendation of controlled vocabulary for QTL mapping. Hortic Res 7:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner TC, Robinson RW (1991) A brief history of the development of cucumber cultivars in the U. S. Cucurbit Genet. Coop Rpt 14:1

    Google Scholar 

  • Wellenreuther M, Bernatchez L (2018) Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol 33:427–440

    PubMed  Google Scholar 

  • Wen C, Mao A, Dong C, Liu H, Yu S, Guo Y, Weng Y, Xu Y (2015) Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Theor Appl Genet 128:2495–2506

    CAS  PubMed  Google Scholar 

  • Wen CL, Zhao WS, Liu WL, Yang LM, Wang YH, Liu XW, Xu Y, Ren HZ, Guo YD, Li C, Li JG, Weng Y, Zhang XL (2019) CsTFL1 inhibits determinate growth through interaction with CsNOT2 and CsFDP in cucumber (Cucumis sativus L.). Development 146:dev180166. https://doi.org/10.1242/dev.180166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng YQ, Colle M, Wang YH, Yang LM, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747–1763

    CAS  PubMed  Google Scholar 

  • Wyszogrodzka A, Williams P, Peterson C (1987) Multiple-pathogen inoculation of cucumber (Cucumis sativus) seedlings. Plant Dis 71:275

    Google Scholar 

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JM, Weng YQ (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    CAS  PubMed  Google Scholar 

  • Yang LM, Koo DH, Li DW, Zhang T, Jiang JM, Luan FS, Renner SS, Henaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen JF, Weng YQ (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    CAS  PubMed  Google Scholar 

  • Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, Li Z, He HL, Zhang C, Si LT, Zhu LH (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    CAS  Google Scholar 

  • Zhang S, Miao H, Gu XF, Yang YH, Xie BY et al (2010) Genetic mapping of the scab resistance gene in cucumber. J Am Soc Hortic Sci 135:53–58

    Google Scholar 

  • Zhang S, Miao H, Yang YH, Xie BY, Wang Y, Gu X (2014) A major quantitative trait locus conferring resistance to Fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed 34:1805–1815

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agriculture and Food Research Initiative Competitive Grants under award Numbers 2015-51181-24285 and 2017-67013-26195 from the US Department of Agriculture National Institute of Food and Agriculture (to Y. Weng). USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

YP conducted majority of the reported research. CW genotyped the RIL population with SLAF-Seq. YHW conducted GBS data analysis and linkage analysis with SNP markers. YH performed FISH analysis. XC, SL, and YL participated in phenotypic data collection in different experiments. YW conceived and supervised the research and wrote the manuscript with YP.

Corresponding author

Correspondence to Yiqun Weng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1766 kb)

Supplementary material 2 (PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wen, C., Han, Y. et al. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. Theor Appl Genet 133, 2271–2290 (2020). https://doi.org/10.1007/s00122-020-03596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03596-y

Navigation