Skip to main content
Log in

The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The bHLH transcription factor, PPLS1, interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet (Setaria italica).

Abstract

Foxtail millet (Setaria italica), a self-pollinated crop with numerous small florets, is difficult for cross-pollination. The color of pulvinus and leaf sheath with purple being dominant to green is an indicative character and often used for screening authentic hybrids in foxtail millet crossing. Deciphering molecular mechanism controlling this trait would greatly facilitate genetic improvement of cultivars in foxtail millet. Here, using the F2 bulk specific-locus amplified fragment sequencing approach, we mapped the putative causal gene for the purple color of pulvinus and leaf sheath (PPLS) trait to a 100 Kb region on chromosome 7. Expression analyses of the 15 genes in this region revealed that Seita.7G195400 (renamed here as PPLS1) was differentially expressed between purple and green cultivars. PPLS1 encodes a bHLH transcription factor and is localized in the nucleus with a transactivation activity. Furthermore, we observed that expression of a MYB transcription factor gene, SiMYB85 (Seita.4G086300) involved in anthocyanin biosynthesis, shows a totally positive association with that of PPLS1. Heterologous co-expression of both PPLS1 and SiMYB85 in tobacco leaves led to elevated anthocyanin accumulation and expression of some anthocyanin-related genes. Furthermore, PPLS1 physically interacts with SiMYB85. Taken together, our results suggest that PPLS1 interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Cao YH, Quan JZ, Dong L, Li ZY, Zhu YB, Zhu LH, Dong ZP, Li DY (2013) Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS ONE 8:e73514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  PubMed  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Radicella JP, Robbins TP, Chen J, Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell 1:1175–1183

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol 146:368–376

    PubMed  PubMed Central  CAS  Google Scholar 

  • D'Amelia V, Aversano R, Batelli G, Caruso I, Castellano Moreno M, Castro-Sanz AB, Chiaiese P, Fasano C, Palomba F, Carputo D (2014) High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J 80:527–540

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Liu CG, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  PubMed  CAS  Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173–219

    Article  PubMed  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feller A, Hernandez JM, Grotewold E (2006) An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. J Biol Chem 281:28964–28974

    Article  PubMed  CAS  Google Scholar 

  • Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS (2018) An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. Planta 247:301–315

    Article  PubMed  CAS  Google Scholar 

  • Gao DY, He B, Zhou YH, Sun LH (2011) Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Plant Cell Rep 30:901–911

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC, Chandler VL (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev 6:864–875

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA 97:13579–13584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, Chai Y, Yang LF, Liu KY, Lu HY, Zhu CR, Lu YQ, Zhou CC, Fan DL, Weng QJ, Guo YL, Huang T, Zhang L, Lu TT, Feng Q, Hao HF, Liu HK, Lu P, Zhang N, Li YH, Guo EH, Wang SJ, Wang SY, Liu JR, Zhang WF, Chen GQ, Zhang BJ, Li W, Wang YF, Li HQ, Zhao BH, Li JY, Diao XM, Han B (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    Article  PubMed  CAS  Google Scholar 

  • Jiang WH, Liu TX, Nan WZ, Chamila Jeewani D, Niu YL, Li CL, Wang Y, Shi X, Wang C, Wang JH, Li Y, Gao X, Wang ZH (2018) Two transcription factors TaPpm1 and TaPpb1 co-regulate the anthocyanin biosynthesis in purple pericarp of wheat. J Exp Bot 69:2555–2567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang YH, Song SK, Schiefelbein J, Lee MM (2013) Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis. Plant Physiol 163:193–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karki S, Rizal G, Quick WP (2013) Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice (N Y) 6:28

    Article  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khlestkina EK (2013) Genes determining the coloration of different organs in wheat. Russ J Genet Appl Res 3:54–65

    Article  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Li YH (1979) Morphology and anatomy of gramineae crops. Shanghai Scientific and Technical Publishers, Shanghai, pp 379–393

    Google Scholar 

  • Li ZY, Wang N, Dong L, Bai H, Quan JZ, Liu L, Dong ZP (2015) Differential gene expression in foxtail millet during incompatible interaction with Uromyces setariae-italicae. PLoS ONE 10:e0123825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YQ, Shan XT, Gao RF, Yang S, Wang SC, Gao X, Wang L (2016) Two IIIf clade-bHLHs from freesia hybrida play divergent roles in flavonoid biosynthesis and trichome formation when ectopically expressed in Arabidopsis. Sci Rep 6:30514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim SH, Kim DH, Kim JK, Lee JY, Ha SH (2017) A radish basic helix-loop-helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis. Front Plant Sci 8:1917

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86:7092–7096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant SR, Irigoyen S, Doust AN, Scholthof KB, Mandadi KK (2016) Setaria: a food crop and translational research model for C4 grasses. Front Plant Sci 7:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Payyavula RS, Singh RK, Navarre DA (2013) Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J Exp Bot 64:5115–5131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229

    Article  PubMed  CAS  Google Scholar 

  • Radicella JP, Turks D, Chandler VL (1991) Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol Biol 17:127–130

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun XM, Zhang ZY, Chen C, Wu W, Ren NN, Jiang CH, Yu JP, Zhao Y, Zheng XM, Yang QW, Zhang HL, Li JJ, Li ZC (2018) The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J Exp Bot 69:1485–1498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao H, Wang Y, Liu DF, Wang WM, Li XB, Zhao XF, Xu JC, Zhai WX, Zhu LH (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52:957–966

    Article  PubMed  CAS  Google Scholar 

  • Xu WJ, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Xiong AS (2019) Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiol 181:195–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yan C, An G, Zhu T, Zhang W, Zhang L, Peng L, Chen J, Kuang H (2019) Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor Appl Genet 132:895–906

    Article  PubMed  CAS  Google Scholar 

  • Zhang HZ (1980) Study on the natural hybridization rate and the acquisition of sexual hybrids of millet. Shanxi Agric Sci 12–13

  • Zhang GY, Liu X, Quan ZW, Cheng SF, Xu X, Pan SK, Xie M, Zeng P, Yue Z, Wang WL, Tao Y, Bian C, Han CL, Xia QJ, Peng XH, Cao R, Yang XH, Zhan DL, Hu JC, Zhang YX, Li HN, Li H, Li N, Wang JY, Wang CC, Wang RY, Guo T, Cai YJ, Liu CZ, Xiang HT, Shi QX, Huang P, Chen QC, Li YR, Wang J, Zhao ZH, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Zhu YQ, Wang LL, Chen LP, Zhou SJ (2015) Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 16:1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao TT, Jiang JB, Liu G, He SS, Zhang H, Chen XL, Li JF, Xu XY (2016) Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC Plant Biol 16:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Ma J, Li M, Deng L, Li G, Xia H, Zhao S, Hou L, Li P, Ma C, Yuan M, Ren L, Gu J, Guo B, Zhao C, Wang X (2019) Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnol J 18:96–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu ZX, Lu YQ (2016) Plant color mutants and the anthocyanin pathway. Chin Bull Bot 51:107–119

    CAS  Google Scholar 

  • Zhu ZX, Wang HL, Wang YT, Guan S, Wang F, Tang JY, Zhang RJ, Xie LL, Lu YQ (2015) Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. J Exp Bot 66:3775–3789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yunyuan Xu (Institute of Botany, Chinese Academy of Sciences), Dr. Hong Luo (Clemson University), Dr. Maoyin Li (Donald Danforth Plant Science Center), Dr. Tianhua He (Curtin University), and Dr. Xu Li (North Carolina State University) for their critical reading and helpful suggestions for the manuscript. We also thank Drs Zhuangzhi Zhou, Zhao Liu, Weixia Lv and Yameng Peng for their technical assistance. This work was supported by the National Key R&D Program of China (2018YFD1000703 and 2018YFD1000700), the National Natural Science Foundation of China (31872880), HAAFS Agriculture Science and Technology Innovation Project (Grant number: 2019-4-2-3), and China Agriculture Research System (CARS-06-13.5-A25).

Author information

Authors and Affiliations

Authors

Contributions

HB, DL and ZD conceived and designed the experiments; HB, ZS, YZ, ZL, XL, JM and XW performed the experiments; YW contributed materials; JQ constructed the F2 populations; HB, ZS, DL, ML, JZ and ZD analyzed the data; HB, ZS and DL wrote the paper.

Corresponding authors

Correspondence to Zhiping Dong or Dayong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hai-Chun Jing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 3499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Song, Z., Zhang, Y. et al. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). Theor Appl Genet 133, 1911–1926 (2020). https://doi.org/10.1007/s00122-020-03566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03566-4

Keywords

Navigation