Skip to main content

Advertisement

Log in

Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We explored the genetic basis of SNF-related traits through GWAS and identified 40 candidate genes. This study provides fundamental insights into SNF-related traits and will accelerate efforts for SNF breeding.

Abstract

Symbiotic nitrogen fixation (SNF) increases sustainability by supplying biological nitrogen for crops to enhance yields without damaging the ecosystem. A better understanding of this complex biological process is critical for addressing the triple challenges of food security, environmental degradation, and climate change. Soybean plants, the most important legume worldwide, can form a mutualistic interaction with specialized soil bacteria, bradyrhizobia, to fix atmospheric nitrogen. Here we report a comprehensive genome-wide association study of 11 SNF-related traits using 79K GBS-derived SNPs in 297 African soybeans. We identified 25 QTL regions encompassing 40 putative candidate genes for SNF-related traits including 20 genes with no prior known role in SNF. A line with a large deletion (164 kb), encompassing a QTL region containing a strong candidate gene (CASTOR), exhibited a marked decrease in SNF. This study performed on African soybean lines provides fundamental insights into SNF-related traits and yielded a rich catalog of candidate genes for SNF-related traits that might accelerate future efforts aimed at sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):705. https://doi.org/10.3390/ijms18040705

    Article  CAS  PubMed Central  Google Scholar 

  • Bolon Y-T et al (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156(1):240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning S, Browning B (2007) Rapid and accurate haplotype phasing and missing-data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR, Young ND et al (2018) Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. Proc Natl Acad Sci USA 115(10):2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns IG et al (1997) How do nutrients drive growth? Plant Soil 196:321–325

    Article  CAS  Google Scholar 

  • Chen C et al (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149(1):306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  Google Scholar 

  • Crutzen PJ et al (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Dhanapal A et al (2016) Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome 8(3):1–15

    Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38(Web Server issue):W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera M, Tejera RA, Iribarne C, Ocana A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121:498–505

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Exner V, Hirsch-Hoffmann M, Gruissem W, Hennig L (2008) PlantDB—a versatile database for managing plant research. Plant Methods 4:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y, Stulen IV, Keulen H, Kuiper PJC (2004) Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant Soil 258:281–292

    Article  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucl Acids Res 38(suppl 1):D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  CAS  PubMed  Google Scholar 

  • Hume DJ, Shelp BJ (1990) Superior performances on the HupBradyrhizobium japonicum strain 532C in Ontario soybean field trials. Can J Plant Sci 70:661–666

    Article  Google Scholar 

  • Indrasumunar A et al (2010) Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol 51(2):201–214

    Article  CAS  PubMed  Google Scholar 

  • Jensen E et al (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Joshi T, Fitzpatrick MR, Chen S, Liu Y, Zhang H, Endacott RZ, Gaudiello EC, Stacey G, Nguyen HT, Xu D (2014) Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucl Acids Res 42(D1):D1245–D1252

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Karmakar K, Kundu A, Rizvi AZ, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M (2019) Transcriptomic analysis with the progress of symbiosis in 'crack-entry' legume arachis hypogaea highlights its contrast with 'infection thread' adapted legumes. Mol Plant Microbe Interact 32(3):271–285

    Article  CAS  PubMed  Google Scholar 

  • Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant Microbe Interact 10:1337–1348

    Article  CAS  Google Scholar 

  • Knobeloch L et al (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrainzar E, Wienkoop S (2017) A proteomic view on the role of legume symbiotic interactions. Frontiers Plant Sci 8:1267. https://doi.org/10.3389/fpls.2017.01267

    Article  Google Scholar 

  • Lee C, Yu D, Choi HK, Kim RW (2017) Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genom 39(1):111–119

    Article  CAS  Google Scholar 

  • Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N (2012) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50

    Article  CAS  PubMed  Google Scholar 

  • Libault M et al (2010) Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Lee YW, Hwang CH (2011) Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant Cell Physiol 52(9):1613–1627

    Article  CAS  PubMed  Google Scholar 

  • Lira MAJ, Nascimento LRS, Fracetto GGM (2015) Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 6:945

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12(2):e1005957

    Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Moore S et al (2011) Impacts of climate variability and future climate change on harmful algal blooms and human health. Proc Centers Oceans Hum Health Investig Meet 7:S4. https://doi.org/10.1186/1476-069X-7-S2-S4

    Article  Google Scholar 

  • Nelson DL, Cox MM (2008) Principles of biochemistry, 5th edn. W.H. Freeman and Company, New York, p 272

    Google Scholar 

  • Okazakia S, Kanekob T, Satoc S, Saeki K (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci 110:17131–17136. https://doi.org/10.1073/pnas.1302360110

    Article  CAS  Google Scholar 

  • Oldroyd EDG (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530. https://doi.org/10.1126/science.275.5299.527

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197(2):573–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramaekers L et al (2013) Identifying quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Mol Breed 31:163–180

    Article  CAS  Google Scholar 

  • Ryle GJA, Arnott RA, Powell CE (1981) Distribution of dry weight between root and shoot in white clover dependent on N2 fixation or utilizing abundant nitrate nitrogen. Plant Soil 60:29–39

    Article  CAS  Google Scholar 

  • SAS Institute (2013) The SAS system for Windows Release 9.4. SAS Institute, Cary

  • Santos MA et al (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas. https://doi.org/10.1111/j.1601-5223.2013.02275.x

    Article  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Severin JA et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng Q, Hunt LA (1991) Poids sec des pousses et des racines du blé, de la triticale et du seigle et teneur en eau du sol. Can J Plant Sci 71:41–49

    Article  Google Scholar 

  • Shultz JL, Kurunam D, Shopinski K et al (2006) The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34(Database issue):D758–D765

    Article  CAS  PubMed  Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Legare G et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1):e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulemanov A, Prithiviraj B, Carlson RW, Jeyaretnam B, Smith DL (2002) Isolation and characterization of the major nod factor of Bradyrhizobium japonicum strain 532C. Microbiol Res 157:25–28

    Article  CAS  PubMed  Google Scholar 

  • Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J et al (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS ONE 8(5):e65688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steidinger BS, Bever JD (2016) Host discrimination in modular mutualisms: a theoretical framework for meta-populations of mutualists and exploiters. Proc R Soc B 283:20152428. https://doi.org/10.1098/rspb.2015.2428

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton MA, Bleeker A (2013) Environmental science: the shape of nitrogen to come. Nature 494:435–437

    Article  CAS  PubMed  Google Scholar 

  • Torkamaneh D, Belzile F (2015) Scanning and filling: ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PLoS ONE 10(7):e0131533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torkamaneh D et al (2017) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinform 18:5

    Article  CAS  Google Scholar 

  • van Hameren B, Hayashi S, Gresshoff PM, Ferguson BJ (2013) Advances in the identification of novel factors required in soybean nodulation, a process critical to sustainable agriculture and food security. J Plant Biol Soil Health 1(1):6

    Google Scholar 

  • Vasileva V, Ilieva A (2007) Effect of pre-sowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of Lucerne (Medicago sativa L.). Agron Res 5:87–92

    Google Scholar 

  • Wang D et al (2012) Symbiosis specificity in the legume—rhizobial mutualism. Cell Microbiol 14(3):334–342

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Weeks ME (1932) The discovery of the elements. IV. Three important gases. J Chem Educ 9(2):215

    Article  CAS  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565–569. https://doi.org/10.1038/ng.608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JM et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Global Affairs Canada, Canadian Field Crop Research Alliance, and International Institute of Tropical Agriculture (IITA). We thank Fausta Karaboneye for her help on greenhouse phenotyping. We also thank sequencing platform of Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Canada.

Author information

Authors and Affiliations

Authors

Contributions

DT and FB conceptualized the project. FC, CB, HA, and SB prepared the plant materials and performed sample selection. DT, FC, and CB conducted greenhouse phenotyping. HA and SB conducted field phenotyping. DT, IR, and HM formal analysis. DT and FB wrote the original draft. DT and FB wrote review and editing.

Corresponding author

Correspondence to François Belzile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Albrecht E. Melchinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkamaneh, D., Chalifour, FP., Beauchamp, C.J. et al. Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. Theor Appl Genet 133, 665–676 (2020). https://doi.org/10.1007/s00122-019-03499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03499-7

Navigation