Skip to main content
Log in

An EMS-induced mutation in a tetratricopeptide repeat-like superfamily protein gene (Ghir_A12G008870) on chromosome A12 is responsible for the liy short fiber phenotype in cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The EMS-induced threonine/isoleucine substitution in a tetratricopeptide repeat-like superfamily protein encoded by gene Ghir_A12G008870 is responsible for the Ligon-lintless-y (liy) short fiber phenotype in cotton.

Abstract

A short fiber mutant Ligon-lintless-y was created through treating the seeds of the cotton line MD15 with ethyl methanesulfonate. Genetic analysis indicated that the short fiber phenotype is controlled by a single recessive locus designated liy. From F2 populations derived from crosses between the mutant and its wild type (WT), we selected 132 short fiber progeny (liy/liy) and made two DNA bulks. We sequenced these DNA bulks along with the two parents of the population. The liy locus was located on chromosome A12. Using multiple F2 populations and F3 progeny plants, we mapped the liy locus within a genomic region of 1.18 Mb. In this region, there is only one gene, i.e., Ghir_A12G008870 encoding a tetratricopeptide repeat-like superfamily protein that has a non-synonymous mutation between the liy mutant and its WT. Analysis of a SNP marker representing this gene in the F2 and F3 progeny plants demonstrated its complete linkage with the liy short fiber phenotype. We further analyzed this SNP marker in a panel of 384 cotton varieties. The mutant allele is absent in all varieties analyzed. RNAseq and RT-qPCR analysis of the gene Ghir_A12G008870 during fiber development showed a significant expression difference between the liy mutant and its WT in developing fiber cells beginning at 12 days post-anthesis. Virus-induced gene silencing of the gene Ghir_A12G008870 significantly reduced the fiber length of the WT cotton line MD15. Taken together, our results suggest that the gene Ghir_A12G008870 is involved in the cotton fiber cell elongation process and is a promising candidate gene responsible for the liy short fiber phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All relevant data reported in this paper are within the paper and its online supplementary files.

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    CAS  PubMed  Google Scholar 

  • Bechere E, Auld DL, Hequet E (2009) Development of ‘naked-tufted’ seed coat mutants for potential use in cotton production. Euphytica 167:333–339

    Google Scholar 

  • Bechere E, Turley RB, Auld DL, Zeng L (2012) A new fuzzless seed locus in an Upland cotton (Gossypium hirsutum L.) mutant. Am J Plant Sci 3:799–804

    Google Scholar 

  • Cai C, Tong X, Liu F, Lv F, Wang H, Zhang T, Guo W (2013) Discovery and identification of a novel Ligon lintless-like mutant (Li x) similar to the Ligon lintless 1 (Li 1) in allotetraploid cotton. Theor Appl Genet 126:963–970

    CAS  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7:987–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding M, Jiang Y, Cao Y, Lin L, He S, Zhou W, Rong J (2014) Gene expression profile analysis of Ligon lintless-1 (Li 1) mutant reveals important genes and pathways in cotton leaf and fiber development. Gene 535:273–285

    CAS  PubMed  Google Scholar 

  • Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120:943–953

    CAS  PubMed  Google Scholar 

  • Fang DD, Naoumkina M, Kim HJ (2018) Unraveling cotton fiber development using fiber mutants in the post-genomic era. Crop Sci 58:2214–2228

    Google Scholar 

  • Gao X, Britt RC Jr, Shan L, He P (2011) Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp. https://doi.org/10.3791/2938

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert MK, Bland JM, Shockey JM, Cao H, Hinchliffe DJ, Fang DD, Naoumkina M (2013a) A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.). PLoS One 8:e75268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert MK, Turley RB, Kim HJ, Li P, Thyssen G, Tang Y et al (2013b) Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li 1). BMC Genom 14:403

    CAS  Google Scholar 

  • Gilbert MK, Kim HJ, Tang Y, Naoumkina M, Fang DD (2014) Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.). PLoS One 9:e95554

    PubMed  PubMed Central  Google Scholar 

  • Griffee F, Ligon LL (1929) Occurrence of “lintless” cotton plants and the inheritance of the character “lintless”. J Am Soc Agron 21:711–717

    Google Scholar 

  • Guo H, Yan Z, Li X, Xie Y, Xiong H, Liu Y et al (2017) Development of a high-efficient mutation resource with phenotypic variation in hexaploid winter wheat and identification of novel alleles in the TaAGP.L-B1 gene. Front Plant Sci 8:1404

    PubMed  PubMed Central  Google Scholar 

  • Hinchliffe DJ, Turley RB, Naoumkina M, Kim HJ, Tang Y, Yeater KM et al (2011) A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.). BMC Genom 12:445

    Google Scholar 

  • Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, Zhang X (2016) GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J 88:921–935

    CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y et al (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    CAS  PubMed  Google Scholar 

  • Jankowicz-Cieslak J, Till BJ (2016) Chemical mutagenesis of seed and vegetatively propagated plants using EMS. Curr Protoc Plant Biol 1:617–635

    PubMed  Google Scholar 

  • Jiang Y, Ding M, Cao Y, Yang F, Zhang H, He S et al (2015) Genetic fine mapping and candidate gene analysis of the Gossypium hirsutum Ligon lintless-1 (Li 1) mutant on chromosome 22(D). Mol Genet Genom 290:2199–2211

    CAS  Google Scholar 

  • Kearney TH, Harrison GJ (1927) Inheritance of smooth seeds in cotton. J Agric Res 35:193–217

    Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Moon HS, Delhom CD, Zeng L, Fang DD (2013) Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.). Theor Appl Genet 126:23–31

    CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohel RJ, Quisenberry JE, Benedict CR (1974) Fiber elongation and dry weight changes in mutant lines of cotton. Crop Sci 14:471–474

    Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnol 33:524–530

    Google Scholar 

  • Liang W, Fang L, Xiang D, Hu Y, Feng H, Chang L, Zhang T (2015) Transcriptome analysis of short fiber mutant Ligon lintless-1 (Li 1) reveals critical genes and key pathways in cotton fiber elongation and leaf development. PLoS One 10:e0143503

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Sun J, Yao L, Yuan Y (2012) Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Genomics 100:42–50

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99

    CAS  PubMed  Google Scholar 

  • Meredith WR (2006) Registration of MD 15 upland cotton germplasm. Crop Sci 46:2722–2723

    Google Scholar 

  • Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM et al (2014) The Li 2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS ONE 9:e90830

    PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD (2015) RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and - 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biol 15:65

    PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Bechere E, Fang DD, Thyssen GN, Florane CB (2017) Genome-wide analysis of gene expression of EMS-induced short fiber mutant Ligon lintless-y (li y) in cotton (Gossypium hirsutum L.). Genomics 109:320–329

    CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    CAS  PubMed  Google Scholar 

  • Qin YM, Zhu YX (2011) How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14:106–111

    CAS  PubMed  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    PubMed  PubMed Central  Google Scholar 

  • Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ et al (2005a) Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW et al (2005b) Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 111:1137–1146

    CAS  PubMed  Google Scholar 

  • Ruan YL (2007) Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. Funct Plant Biol 34:1–10

    CAS  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM (2015) Physiology. In: Fang DD, Percy RG (eds) Cotton, 2nd edn. ASA-SSSA-CSSA, Madison, pp 339–400

    Google Scholar 

  • Sparks JA, Kwon T, Renna L, Liao F, Brandizzi F, Blancaflor EB (2016) HLB1 is a tetratricopeptide repeat domain-containing protein that operates at the intersection of the exocytic and endocytic pathways at the TGN/EE in Arabidopsis. Plant Cell 28:746–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2014) Next generation genetic mapping of the Ligon-lintless-2 (Li2) locus in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:2183–2192

    CAS  PubMed  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2015) Mapping-by-sequencing of Ligon-lintless-1 (Li1) reveals a cluster of neighboring genes with correlated expression in developing fibers of Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 128:1703–1712

    CAS  PubMed  Google Scholar 

  • Thyssen GN, Fang DD, Zeng L, Song X, Delhom CD, Condon TL et al (2016) The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene. G3 Genes Genomes Genetics 6:1627–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thyssen GN, Fang DD, Turley RB, Florane CB, Li P, Mattison CP, Naoumkina M (2017) A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. Plant J 90:111–121

    CAS  PubMed  Google Scholar 

  • Wan Q, Guan X, Yang N, Wu H, Pan M, Liu B et al (2016) Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol 210:1298–1310

    CAS  PubMed  Google Scholar 

  • Wang C, Lv Y, Xu W, Zhang T, Guo W (2014) Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genom 15:94

    Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu Shen C, Li J et al (2019a) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    CAS  PubMed  Google Scholar 

  • Wang Y, Jiang H, Yuan Y, Chai Q, Gao M, Wang X et al (2019b) Genetic analysis of a novel fiber developmental mutant ligon-lintless-Sd (LiSd) in Gossypium hirsutum L. Genet Resour Crop Evol 66:1119–1127

    CAS  Google Scholar 

  • Wu H, Tian Y, Wan Q, Fang L, Guan X, Chen J et al (2018) Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol 217:883–895

    CAS  PubMed  Google Scholar 

  • Zhang TZ, Pan JJ (1991) Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L. Jiangsu J Agr Sci 7:13–16

    Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnol 33:531–537

    CAS  Google Scholar 

  • Zhu QH, Yuan Y, Stiller W, Jia Y, Wang P, Pan Z et al (2018) Genetic dissection of the fuzzless seed trait in Gossypium barbadense. J Exp Bot 69:997–1009

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the USDA-Agricultural Research Service CRIS projects 6054-21000-018-00D and 6066-21000-052-00D. We thank Mr. Chris Delhom and Mrs. Holly King at Cotton Structure and Quality Research Unit in New Orleans for measuring the fiber quality attributes using a high volume instrument. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA which is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

DDF conceived and coordinated the project and wrote the manuscript. MN made crosses for part of the mapping populations, conducted RNAseq and RT-qPCR analysis, and designed and executed the VIGS experiment. GNT analyzed DNA sequences, designed primers, and co-wrote the manuscript. EB created the liy mutant, developed and grew F2 populations. PL isolated DNAs and conducted DNA marker genotyping. CBF assisted growing the experimental materials, conducted VIGS experiment and RNA isolation. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to David D. Fang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Diane E. Mather.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

F2 plants growing in a New Orleans, LA, USA field (JPEG 155 kb)

Fig. S2

Expression of the gene Ghir_A12G008870 in virus induced gene silencing plants (NC = negative control) (JPEG 91 kb)

Fig. S3

One Way ANOVA analysis of fiber quality traits in virus-induced gene silencing plants (NC = negative control).No significant difference was observed for uniformity (UI), strength (STR), elongation (ELO), short fiber content (SFC), or maturity between VIGS plants containing empty vector (NC) and containing gene constructs (p = 0.05) (PDF 384 kb)

Fig. S4

RNAseq reads of the gene Ghir_A12G008870 and Ghir_D12G008610 at 3, 8, and 16 days post-anthesis (DPA) fibers (TIFF 315 kb)

Supplementary material 5 (XLSX 11 kb)

Supplementary material 6 (XLSX 21 kb)

Supplementary material 7 (XLSX 13 kb)

Supplementary material 8 (XLSX 18 kb)

Supplementary material 9 (XLSX 12 kb)

Supplementary material 10 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D.D., Naoumkina, M., Thyssen, G.N. et al. An EMS-induced mutation in a tetratricopeptide repeat-like superfamily protein gene (Ghir_A12G008870) on chromosome A12 is responsible for the liy short fiber phenotype in cotton. Theor Appl Genet 133, 271–282 (2020). https://doi.org/10.1007/s00122-019-03456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03456-4

Keywords

Navigation