Skip to main content
Log in

QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We constructed the first high-quality and high-density genetic linkage map for an interspecific BIL population in cotton by specific-locus amplified fragment sequencing for QTL mapping. A novel gene GhPIN3 for plant height was identified in cotton.

Abstract

Ideal plant height (PH) is important for improving lint yield and mechanized harvesting in cotton. Most published genetic studies on cotton have focused on fibre yield and quality traits rather than PH. To facilitate the understanding of the genetic basis in PH, an interspecific backcross inbred line (BIL) population of 250 lines derived from upland cotton (Gossypium hirsutum L.) CRI36 and Egyptian cotton (G. barbadense L.) Hai7124 was used to construct a high-density genetic linkage map for quantitative trait locus (QTL) mapping. The high-density genetic map harboured 7,709 genotyping-by-sequencing (GBS)-based single nucleotide polymorphism (SNP) markers that covered 3,433.24 cM with a mean marker interval of 0.67 cM. In total, ten PH QTLs were identified and each explained 4.27–14.92% of the phenotypic variation, four of which were stable as they were mapped in at least two tests or based on best linear unbiased prediction in seven field tests. Based on functional annotation of orthologues in Arabidopsis and transcriptome data for the genes within the stable QTL regions, GhPIN3 encoding for the hormone auxin efflux carrier protein was identified as a candidate gene located in the stable QTL qPH-Dt1-1 region. A qRT-PCR analysis showed that the expression level of GhPIN3 in apical tissues was significantly higher in four short-statured cotton genotypes than that in four tall-statured cotton genotypes. Virus-induced gene silencing cotton has significantly increased PH when the expression of the GhPIN3 gene was suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cao Z, Wang P, Zhu X, Chen H, Zhang T (2014) SSR marker-assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theor Appl Genet 127:587–594

    Article  PubMed  Google Scholar 

  • Chen Y, Fan X, Song W, Zhang Y, Xu G (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10:139–149

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y (2018) Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet 132:97–112

    Article  CAS  PubMed  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F (2018a) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    Article  CAS  PubMed  Google Scholar 

  • Du X, Liu S, Sun J, Zhang G, Jia Y, Pan Z, Xiang H, He S, Xia Q, Xiao S, Shi W, Quan Z, Liu J, Ma J, Pang B, Wang L, Sun G, Gong W, Jenkins JN, Lou X, Zhu J, Xu H (2018b) Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genom 19:451

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Huang C, Li F, Zhou X (2014) A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J 12:638–649

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Shen C, Wen T, Gao B, Zhu Li X, Ahmed MM, Li D, Lin Z (2018) SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genom 293:793–805

    Article  CAS  Google Scholar 

  • Ji G, Zhang Q, Du R, Lv P, Ma X, Fan S, Li S, Hou S, Han Y, Liu G (2017) Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. BMC Genom 18:51

    Article  Google Scholar 

  • Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M (2016) High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genom 17:909

    Article  Google Scholar 

  • Keerio AA, Shen C, Nie Y, Ahmed MM, Zhang X, Lin Z (2018) QTL mapping for fiber quality and yield traits Based on introgression lines derived from Gossypium hirsutum × G. tomentosum. Int J Mol Sci 19:243

    Article  CAS  PubMed Central  Google Scholar 

  • Kimura M, Kagawa T (2006) Phototropin and light-signaling in phototropism. Curr Opin in Plant Biol 9:503–508

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Dong Y, Zhao T, Li L, Li C, Yu E, Mei L, Daud MK, He Q, Chen J, Zhu S (2016a) Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:1356

    PubMed  PubMed Central  Google Scholar 

  • Li X, Jin X, Wang H, Zhang X, Lin Z (2016b) Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res 23:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 9:e98855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Liu F, Shan X, Zhang J, Tang S, Fang X, Liu X, Wang W, Tan Z, Teng Z, Zhang Z, Liu D (2015) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genom 290:1683–1700

    Article  CAS  Google Scholar 

  • Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016a) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129:1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Guo L, Pan Y, Zhao Q, Wang J, Song Z (2016b) Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing. Sci Rep 6:24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Teng Z, Kong J, Liu X, Wang W, Zhang X, Zhai T, Deng X, Wang J, Zeng J (2018) Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC Plant Biol 18:1

    Article  CAS  Google Scholar 

  • Liu G, Pei W, Li D, Ma J, Cui Y, Wang N, Song J, Wu M, Li L, Zang X, Yu S, Zhang J, Yu J (2019) A targeted QTL analysis for fiber length using a genetic population between two introgressed backcrossed inbred lines in upland cotton (Gossypium hirsutum). Crop J 7:273–282

    Article  Google Scholar 

  • Ma J, Geng Y, Pei W, Wu M, Li X, Liu G, Li D, Ma Q, Zang X, Yu S, Zhang J, Yu J (2018a) Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genom 19:882

    Article  CAS  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X (2018b) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “Green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Palme K, Dovzhenko A, Ditengou FA (2006) Auxin transport and gravitational research: perspectives. Protoplasma 229:175

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Romay MC, Gore MA, Flintgarcia SA, Zhang Z, Millard MJ, Gardner CA, Mcmullen MD, Holland JB, Bradbury PJ (2014) The genetic architecture of maize height. Genetics 196:1337–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256

    Article  CAS  PubMed  Google Scholar 

  • Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M (2006) Petráek, J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  CAS  PubMed  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang J (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1615–1625

    Article  CAS  Google Scholar 

  • Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1003–1025

    Article  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice - New insight into the rice variant that helped to avert famine over thirty years ago. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Schiessl S, Iniguez-Luy F, Wei Q, Snowdon RJ (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genom 16:737

    Article  CAS  Google Scholar 

  • Shang L, Liang Q, Wang Y, Wang X, Wang K, Abduweli A, Ma L, Cai S, Hua J (2015a) Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Euphytica 205:877–888

    Article  CAS  Google Scholar 

  • Shang L, Liu F, Wang Y, Abduweli A, Cai S, Wang K, Hua J (2015b) Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Plant Breed 134:703–712

    Article  CAS  Google Scholar 

  • Shang L, Wang Y, Cai S, Ma L, Liu F, Chen Z, Su Y, Wang K, Hua J (2016) Genetic analysis of upland cotton dynamic heterosis for boll number per plant at multiple developmental stages. Sci Rep 6:35515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Zhang B, Liu A, Li W, Li J, Lu Q, Zhang Z, Li S, Gong W, Shang H, Gong J, Chen T, Ge Q, Wang T, Zhu H, Liu Z, Yuan Y (2016) Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. BMC Genom 17:877

    Article  Google Scholar 

  • Su J, Li L, Zhang C, Wang C, Gu L, Wang H, Wei H, Liu Q, Huang L, Yu S (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131:1–16

    Article  CAS  Google Scholar 

  • Sun F-D, Zhang J-H, Wang S-F, Gong W-K, Shi Y-Z, Liu A-Y, Li J-W, Gong J-W, Shang H-H, Yuan Y-L (2011) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582

    Article  Google Scholar 

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao A, Huang L, Wu G, Afshar RK, Qi J, Xu J, Fang P, Lin L, Zhang L, Lin P (2017) High-density genetic map construction and QTLs identification for plant height in white jute(Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. BMC Genom 18:355

    Article  CAS  Google Scholar 

  • Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416

    Article  CAS  PubMed  Google Scholar 

  • Van OH, Stam P, Visser RG, van Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112:187–194

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Article  CAS  Google Scholar 

  • Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, Sturrock C, Yu H, Lu C, Peng J (2018a) LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot 69:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang T, Wang R, Zhao Y (2018b) Recent advances in auxin research in rice and their implications for crop improvement. J Exp Bot 69:255

    Article  CAS  PubMed  Google Scholar 

  • Wen T, Wu M, Shen C, Gao B, Zhu Zhang X, You C, Lin Z (2018) Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J 16:1654–1666

    Article  CAS  PubMed Central  Google Scholar 

  • Würschum T, Langer SM, Longin C, Tucker MR, Leiser WL (2017) A modern green revolution gene for reduced height in wheat. Plant J 92:892–903

    Article  CAS  PubMed  Google Scholar 

  • Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot 66:3791–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang J (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724

    Article  CAS  Google Scholar 

  • Yu J, Yu S, Fan S, Song M, Zhai H, Li X, Zhang J (2012) Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E (2015a) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res 22:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM (2015b) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li J, Muhammad J, Cai J, Jia F, Shi Y, Gong J, Shang H, Liu A, Chen T, Ge Q, Palanga KK, Lu Q, Deng X, Tan Y, Li W, Sun L, Gong W, Yuan Y (2015c) High resolution consensus mapping of quantitative trait loci for fiber strength, length and micronaire on chromosome 25 of the upland cotton (Gossypium hirsutum L.). PLoS One 10:e0135430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q, Gong J, Liu A, Chen T, Wang D, Wang Y, Palanga KK, Muhammad J, Li W, Lu Q, Deng X, Tan Y, Song W, Cai J, Li P, Rashid H, Gong W, Yuan Y (2016) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum). BMC Plant Biol 16:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhang Z, Bales C, Gu C, DiFonzo C, Li M, Song Q, Cregan P, Yang Z, Wang D (2017) Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. Theor Appl Genet 130:1941–1952

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Yuan Y, Stiller W, Jia Y, Wang P, Pan Z, Du X, Llewellyn D, Wilson I (2018) Genetic dissection of the fuzzless seed trait in Gossypium barbadense. J Exp Bot 69:997–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank New Mexico Agricultural Experiment Station, New Mexico, USA. This research was supported by grants from the National Natural Science Foundation of China (Grant Nos. 31621005 and 31701474), the National Key Research and Development Program of China (Grant Nos. 2018YFD0100300 and 2016YFD0101400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfa Zhang, Shuxun Yu or Jiwen Yu.

Ethics declarations

Conflict interests

The authors declare that they have no competing interests.

Ethical standards

The authors state that all experiments in the study comply with the ethical standards in the USA.

Additional information

Communicated by Diane E. Mather.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

SLAF markers number and fold depth for each of the BILs and their parents. In a and b, the red, green and blue represent recurrent parent CRI36, parent Hai7124 and offspring, respectively. (PDF 441 kb)

Supplemental Figure S2

Marker collinearity between the genetic map and the physical one. a and b represent the marker collinearity in the A subgenome and D subgenome, respectively. (TIFF 4487 kb)

Supplemental Figure S3

Information on QTL mapping. a shows the QTL in At3 detected with BLUP; b shows the QTL in At10 detected in 16Hnsy; c shows the QTL in Dt9 detected in 17Aync; d shows the QTL in Dt11 detected in 16Aync; d shows the QTL in Dt12 detected in 16Aync; e shows the QTL in Dt13 detected in 17Aync; the black dotted line represents LOD = 3.50; the red line represents the percentage of phenotypic variance explained; and the blue line represents the LOD value. (PDF 560 kb)

Supplemental Table S1

ANOVA and combined broad-sense heritability analysis of plant height. (XLSX 10 kb)

Supplemental Table S2

Genotype statistics of SNP markers in the two parents. (XLSX 8 kb)

Supplemental Table S3

Genotype frequency information of the 7,709 SNP markers in the genetic map. 6 (XLSX 8 kb)

Supplemental Table S4

The 7,709 markers and their genetic distance information in the genetic map. 7 (XLSX 200 kb)

Supplemental Table S5

The physical position information of the 7,709 markers. 8 (XLSX 211 kb)

Supplemental Table S6

Spearman correlation coefficient between the genetic map and physical map in each linkage group. 9 (XLSX 9 kb)

Supplemental Table S7

The position information of the 336 recombination hotspots in the genetic map 10 (XLSX 30 kb)

Supplemental Table S8

Gene annotation analysis of 1,220 candidate genes 11 (XLSX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Pei, W., Ma, Q. et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet 132, 2663–2676 (2019). https://doi.org/10.1007/s00122-019-03380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03380-7

Navigation