Skip to main content
Log in

A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Sequence analysis revealed that an SNP (A1855G) in CsBADH of cucumber accession PK2011T202 causes amino acid change in a highly conserved motif, Y163C. Gene mapping showed association between the SNP and the fragrance.

Abstract

Pandan-like fragrance is a value-added trait in several food crops such as rice, vegetable soybean and sorghum. The fragrance is caused by the volatile chemical 2-acetyl-1-pyrroline (2AP). Mutation(s) in betaine aldehyde dehydrogenase 2 (BADH2; also known as aminoaldehyde dehydrogenase 2) gene causes defective BADH2 and results in biosynthesis of 2AP. Recently, cucumber cultivars possessing pandan-like fragrance were discovered in Thailand. In this study, we report an association between CsBADH and the fragrance in cucumber accession “PK2011T202”. Gene expression analysis of CsBADH in leaves of PK2011T202 and “301176” (non-fragrant) at various growth stages revealed that CsBADH was expressed in both accessions. Sequence comparison of CsBADH showed that PK2011T202 possesses a single base substitution (A1855G) in exon 5 which causes an amino acid change in a highly conserved motif of BADH, Y163C. Single nucleotide-amplified polymorphism markers were developed to detect the SNP polymorphism between the wild-type and fragrance alleles. Since CsBADH is located on chromosome 1, quantitative trait locus (QTL) mapping was conducted for this chromosome using an F2 and a backcross populations developed from the cross between PK2011T202 and 301176. QTL analysis in both populations showed that the major QTL for fragrance, qFgr, was co-localized with the CsBADH. We concluded that the defect function of CsBADH is responsible for fragrance in cucumber PK2011T202.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed 21:49–65

    Article  CAS  Google Scholar 

  • Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2010) Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol J 9:75–87

    Article  Google Scholar 

  • Arumanagathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:229–241

    Article  Google Scholar 

  • AVRDC (2003) AVRDC progress report 2002. AVRDC-The World Vegetable Center, Shanhua

    Google Scholar 

  • Ayyangar GNR (1938) Studies in sorghum. J Madras Univ 11:131–143

    Google Scholar 

  • Berner DK, Hoff BJ (1986) Inheritance of scent in American long grain rice. Crop Sci 26:876–878

    Article  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  CAS  PubMed  Google Scholar 

  • Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for the fragrance in rice. Plant Mol Biol 68:443–449

    Article  Google Scholar 

  • Buttery RG, Ling LC, Juliano BO, Turnbaugh JG (1983) Cooked rice aroma and 2-acetyl-1-pyrroline. J Agric Food Chem 31:823–826

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Wilde WJJO, Duyfjes BEE (2010) Cucumis sativus L. forma hardwickii (Royle) W.J. de Wilde & Duyfjes and feral forma sativus. Thai For Bull (BOT) 38:98–107

    Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  Google Scholar 

  • Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA (2012) Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. Plant Physiol 158:1570–1582

    Article  PubMed Central  PubMed  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald TL, Waters DLE, Henry RJ (2008) The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl-1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci 174:539–546

    Article  Google Scholar 

  • Food and Agriculture Organization (2013) FAOSTAT. http://faostat.fao.org. Accessed 5 March 2014

  • Fushimi T, Masuda R (2001) 2-acetyl-1-pyrroline concentration of the vegetable soybean. In: Lumpkin T, Shanmugasundaram S (eds) Proceeding of the 2nd international vegetable soybean conference. Washington State University, Pullman, p 39

  • Huang TC, Teng CH, Chang JL, Chuang HS, Ho CT, Wu ML (2008) Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J Agric Food Chem 56:7399–7404

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang QN, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety ‘‘Kaori’’ and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    Article  CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012) Identification of a new fragrance allele in soybean and development of its functional marker. Mol Breed 29:13–21

    Article  CAS  Google Scholar 

  • Kirch HH, Schlingensiepen S, Kotchoni S, Sunkar R, Bartels D (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Mol Biol 57:315–332

    Article  CAS  PubMed  Google Scholar 

  • Kopečný D, Tylichová M, Snegaroff J, Popelková H, Šebela M (2011) Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J278:3130–3139

    Google Scholar 

  • Kopečný D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S (2013) Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 288:9491–9507

    Article  PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kovach MJ, Calingacion MN, Fitzgerald SR McCough (2009) The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci USA 106:14444–14449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquiere A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet 93:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Murty DS, Nicodemus KD, House LR (1982) Inheritance of basmati and dimpled seed in sorghum. Crop Sci 22:1080–1082

    Article  Google Scholar 

  • Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, Xiao Y, Yang S, Wang F, Lu BL, Gao F, Lu T, Liu Y (2008) RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol 8:100. doi:10.1186/1471-2229-8-100

    Article  PubMed Central  PubMed  Google Scholar 

  • Pramnoi P, Somta P, Chankaew S, Juwattanasomran R, Srinives P (2013) A single recessive gene controls fragrance in cucumber (Cucumis sativus L.). J Genet 92:147–149

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2010) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H, Xie B, Gu X, Wang X, Du Y, Jin W, Huang S (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795

    Article  PubMed Central  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Shao GN, TangA Tang SQ, Luo J, Jiao GA, Wu JL, Hu PS (2011) A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed 130:172–176

    Article  CAS  Google Scholar 

  • Shi WW, Yang Y, Chen SH, Xu ML (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22:185–192

    Article  CAS  Google Scholar 

  • Somta P, Musch W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T, Sorajjapinun W, Seehaluk W, Tragoonrung S, Srinives P (2008) New microsatellite markers isolated from mungbean (Vigna radiata (L.) Wilczek). Mol Ecol Resour 8:1155–1157

    Article  CAS  PubMed  Google Scholar 

  • Sood BG, Siddiq EA (1978) A rapid technique for scent determination in rice. Indian J Genet 38:268–275

    Google Scholar 

  • Wanchana S (2005) Identification of genes controlling grain aroma and amylose content for positional cloning and marker-assisted selection program in rice (Oryza sativa L.). Ph.D. Thesis, Kasetsart University, Thailand

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh

    Google Scholar 

  • Wu ML, Chou KL, Wu CR, Chen JK, Huang TC (2009) Characterization and the possible formation mechanism of 2-acetyl-1-pyrroline in aromatic vegetable soybean. J Food Sci 74:192–197

  • Yundaeng C, Somta P, Tangphatsornruang S, Wongpornchai S, Srinives P (2013) Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 126:2897–2906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Royal Golden Jubilee Ph.D. Scholarship and the TRF Research Career Development Grant (RSA5580057) both of which co-funded by the Thailand Research Fund (TRF) and Kasetsart University to P. Somta and C. Yundaeng.

Ethical standards and conflict of interest

All the experiments performed in this study comply with the current laws of Thailand. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakit Somta.

Additional information

Communicated by A. J. Bervillé.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yundaeng, C., Somta, P., Tangphatsornruang, S. et al. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor Appl Genet 128, 1881–1892 (2015). https://doi.org/10.1007/s00122-015-2554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2554-5

Keywords

Navigation