Skip to main content
Log in

Different faces, same attitudes: behavioral mimicry and description of a new termitophilous species of the remarkable rove beetle genus Thyreoxenus (Staphylinidae, Aleocharinae, Corotocini) from Brazil with notes on post-imaginal growth

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

This article has been updated

Abstract

Among the termite-associated fauna, rove beetles of the subfamily Aleocharinae are distinguished by exhibiting the majority of convergent evolutions to this lifestyle. This phenomenon known as termitophily brings many advantages, including the care of nestmates and the exploitation of resources. While some mechanisms that ensure the integration of the termitophiles into the colony are well known, such as chemical mimicry, others remain unclear. In this article, we discuss the importance of termitophile behavior for the stability of interactions within termite colonies. We address behavioral mimicry as an important integration mechanism between termitophiles and termites. We compare both termitophile’s and termite’s behavioral repertoires and found no significant differences between them, suggesting that social parasites can mislead their host through their behavior in order to exploit the colony and to keep positive interactions with their hosts. In addition, we describe a new species of termitophile rove beetle from a highland humid forest in northeastern Brazil: Thyreoxenus alakazam sp. nov., with detailed illustrations and comments on post-imaginal growth in the context of our hypothesis of the post-imago phenotype, known as stenogastry, as a recapitulation of ancestral conditions in physogastric rove beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 06 November 2022

    In the original publication, the URL for Zoobank was misplaced. The article has been updated to rectify the error.

References 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  CAS  Google Scholar 

  • Anderson B, de Jager ML (2020) Natural selection in mimicry. Biol Rev 95:291–304. https://doi.org/10.1111/brv.12564

    Article  Google Scholar 

  • Bandeira A (1998) Danos causados por cupins na Amazônia brasileira. In: Fontes LR, Berti Filho E (eds) Cupins: o desafio do conhecimento. Piracicaba: FEALQ 87–98

  • Bates HW (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans Linn Soc Lond 23:495–566

    Article  Google Scholar 

  • Cai C, Huang D, Newton AF et al (2017) Early evolution of specialized termitophily in cretaceous rove beetles. Current Biology: CB 27:1229–1235. https://doi.org/10.1016/j.cub.2017.03.009

    Article  CAS  Google Scholar 

  • Cini A, Sumner S, Cervo R (2019) Inquiline social parasites as tools to unlock the secrets of insect sociality. Philos Trans Royal Soc b: Biol Sci 374:20180193. https://doi.org/10.1098/rstb.2018.0193

    Article  Google Scholar 

  • Constantino R (2002) The pest termites of South America: taxonomy, distribution and status. J Appl Entomol 126:355–365

    Article  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social Immunity. Curr Biol 17(16):693–702

    Article  Google Scholar 

  • Cunha H, Lima JS, de Souza LF et al (2015) No morphometric distinction between the host constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae, Nasutitermitinae) and its obligatory termitophile Corotoca melantho Schiødte (Coleoptera: Staphylinidae). Sociobiology 62:65–69. https://doi.org/10.13102/sociobiology.v62i1.65-69

    Article  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511. https://doi.org/10.1098/rspb.1979.0081

    Article  CAS  Google Scholar 

  • Dawkins R (1996) Climbing mount improbable. WW Norton and Company.

  • de Barbosa VMR, de Agra FM, Sampaio E et al (2004) Diversidade florística na Mata do Pau-Ferro Areia Paraíba. Brejos de altitude em Paraíba e Pernambuco–história natural, ecologia e conservação Biodiversidade 9:111–122

    Google Scholar 

  • de Lima SVL, Bailez OE, Viana-Bailez AM (2013) Caste polymorphism of apterous line of the Neotropical termite Nasutitermes corniger (Motschulsky) (Isoptera, Termitidae). Rev Bras Entomol 57:309–312. https://doi.org/10.1590/S0085-56262013005000019

    Article  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154. https://doi.org/10.1146/annurev.en.39.010194.001021

    Article  CAS  Google Scholar 

  • Eloi I, Pires-Silva CM, Zilberman B (2020) Cumulative species description curve of Corotocini (Aleocharinae, Staphylinidae) and prospects for the future. Acta Brasiliensis 4:133. https://doi.org/10.22571/2526-4338325

    Article  Google Scholar 

  • Fontes LR, Milano S (2002) Termites as an urban problem in South America. Sociobiology 40(1):103–151

    Google Scholar 

  • Friard O, Gamba M (2016) BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol Evol 7:1325–1330

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, New York

    Google Scholar 

  • Holen ØH, Johnstone RA (2004) The evolution of mimicry under constraints. Am Nat 164:598–613. https://doi.org/10.1086/424972

    Article  Google Scholar 

  • Hughes DP, Brodeur J, Thomas F (2012) Host manipulation by parasites. Oxford University Press

    Book  Google Scholar 

  • Hugo H, Cristaldo PF, DeSouza O (2020) Nonaggressive behavior: a strategy employed by an obligate nest invader to avoid conflict with its host species. Ecol Evol 10:8741–8754. https://doi.org/10.1002/ece3.6572

    Article  Google Scholar 

  • Jacobson HR, Kistner DH (1999) A new genus, new species, and new records of termitophilous corotocini (Coleoptera: Staphylinidae, Aleocharinae) from Australia and the Orient with a discussion of their relationship to others in the Australian, New Guinean, and Indo-Malayan areas. Sociobiology 34(2):323–385

    Google Scholar 

  • Jacobson HR, Kistner DH, Pasteels JM (1986) Generic revision, phylogenetic classification, and phylogeny of the termitophilous tribe Corotocini (Coleoptera: Staphylinidae). Sociobiology 12:1–245

    Google Scholar 

  • Jiang R-X, Zhang H-R, Eldredge KT et al (2021) Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera). Palaeoentomology 4:374–389. https://doi.org/10.11646/palaeoentomology.4.4.13

    Article  Google Scholar 

  • Kakkar G, Chouvenc T, Su N-Y (2016) Postecdysis sclerotization of mouthparts of the formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 109:792–799. https://doi.org/10.1093/jee/tov394

    Article  Google Scholar 

  • Kanao T, Eldredge KT, Maruyama M (2016) A defensive body plan was pre-adaptive for termitophily in the rove beetle tribe Termitohospitini (Staphylinidae: Aleocharinae). bioRxiv 83881. https://doi.org/10.1101/083881

  • Kistner DH (1982) Termitophilous Aleocharinae Associated with Nasutitermes matangensis in Java, Republic of Indonesia (Coleoptera, Staphylinidae). Sociobiology 7(2):213–244

  • Kistner DH (1968) Revision of the African species of the termitophilous tribe Corotocini (Coleoptera: Staphylinidae). I. a new genus and species from Ovamboland and its zoogeographic significance. J N Y Entomol Soc 76:213–221

    Google Scholar 

  • Kistner DH (1969) The biology of termitophiles. In: Krishna K, Weesner FM (eds) Biology of Termites. Elsevier, pp 525–557

    Chapter  Google Scholar 

  • Kistner DH (1973) The termitophilous staphylinidae1 associated with Grallatotermes in Africa; their taxonomy, behavior, and a survey of their glands of external secretion. Ann Entomol Soc Am 66:197–222. https://doi.org/10.1093/aesa/66.1.197

    Article  Google Scholar 

  • Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR (ed) Social insects, vol 1. Academic Press, New York, pp 339–413

    Chapter  Google Scholar 

  • Kistner DH, Jacobson HR (1976) New species and new records of termitophilous species from Central America and Mexico with descriptions of behavior related glands and ultrastructure (Coleoptera: Staphylinidae). Sociobiology 2(1):1–76

    Google Scholar 

  • Malcolm SB (1990) Mimicry: status of a classical evolutionary paradigm. Trends Ecol Evol 5:57–62. https://doi.org/10.1016/0169-5347(90)90049-J

    Article  CAS  Google Scholar 

  • Mann WM (1923) New genera and species of termitophilous Coleoptera from northern South America. Zool : Sci Contrib N Y Zool Soc 3:323–366

    Google Scholar 

  • Maruyama M, Parker J (2017) Deep-time convergence in rove beetle symbionts of army ants. Curr Biol 27:920–926. https://doi.org/10.1016/j.cub.2017.02.030

    Article  CAS  Google Scholar 

  • Maruyama M, Akino T, Hashim R, Komatsu T (2009) Behavior and cuticular hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology 54:19–35

    Google Scholar 

  • Miramontes O, DeSouza Og (2008) Individual basis for collective behaviour in the termite, Cornitermes cumulans. J Insect Sci 8(1):1–11. https://doi.org/10.1673/031.008.2201

  • Miura T, Matsumoto T (1998) Open-air litter foraging in the nasute termite Longipeditermes longipes (Isoptera: Termitidae). J Insect Behav 11:179–189

    Article  Google Scholar 

  • Moura FMS, Vasconcellos A, Araújo VFP, Bandeira AG (2006) Feeding habit of Constrictotermes cyphergaster (Isoptera, Termitidae) in an area of caatinga, Northeast Brazil. Sociobiology 48:1–6

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M et al (2020) vegan: Community Ecology Package. R package version 2.5–6

  • Oliveira MH, da Vieira RV, S, Moreira IE, et al (2018) “The road to reproduction”: foraging trails of Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) as maternities for Staphylinidae beetles. Sociobiology 65:531. https://doi.org/10.13102/sociobiology.v65i3.2902

    Article  Google Scholar 

  • Parker J (2016) Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological News 22:65–108

    Google Scholar 

  • Parker J, Eldredge KT, Thomas IM, et al (2017) Hox-logic of body plan innovations for social symbiosis in rove beetles. https://resolver.caltech.edu/CaltechAUTHORS:20181031-101742480. Accessed 12 Aug 2021

  • Pires-Silva CM, Zilberman B, Eloi I, Bezerra-Gusmão MA (2019) First record of stenogastric Corotoca Schiødte (Staphylinidae, Aleocharinae, Corotocini) with notes on behavior, morphology and its phylogenetic significance. Zootaxa 4691:47–56. https://doi.org/10.11646/zootaxa.4691.1.3

    Article  Google Scholar 

  • Pires-Silva CM, Eloi I, Zilberman B, Bezerra-Gusmão MA (2022) Nest volume and distance between nests do not affect population size or species richness of the Termitophilous Corotocini Fauna. Ann Zool Fenn 59:61–70. https://doi.org/10.5735/086.059.0107

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing

  • Rettenmeyer CW (1970) insect mimicry. Annu Rev Entomol 15:43–74. https://doi.org/10.1146/annurev.en.15.010170.000355

    Article  Google Scholar 

  • Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM (2011) The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insect Soc 58:281–292. https://doi.org/10.1007/s00040-010-0128-8

    Article  Google Scholar 

  • Roff DA (1990) The evolution of flightlessness in insects. Ecol Monogr 60:4

    Article  Google Scholar 

  • Rosa CS, Cristaldo PF, Florencio DF et al (2018) On the chemical disguise of a physogastric termitophilous rove beetle. Sociobiology 65(1):38–47. https://doi.org/10.13102/sociobiology.v65i1.1942

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press

    Book  Google Scholar 

  • Sands WA, Lamb RW (1975) The systematic position of Kaudernitermes gen. n. (Isoptera: Termitidae, Nasutitermitinae) and its relevance to host relationships of termitophilous staphylinid beetles. J Entomol 44:189–200

    Google Scholar 

  • Sawada K (1972) Methodological research in the taxonomy of Aleocharinae, Contributions from the Biological Laboratory. Kyoto University 24:33

    Google Scholar 

  • Seevers CH (1937) New species of termitophilous Staphylinidae from Tropical America and the Solomon Islands. Ann Entomol Soc Am 30:1–23. https://doi.org/10.1093/aesa/30.1.1

    Article  Google Scholar 

  • Seevers CH (1957) A monograph on the termitophilous Staphylinidae, Coleoptera. Fieldiana Zoology 40:1–334

    Google Scholar 

  • Sherratt TN (2002) The evolution of imperfect mimicry. Behav Ecol 13:821–826. https://doi.org/10.1093/beheco/13.6.821

    Article  Google Scholar 

  • Smith JM (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith AA (2019) Prey specialization and chemical mimicry between Formica archboldi and Odontomachus ants. Insect Soc 66:211–222. https://doi.org/10.1007/s00040-018-0675-y

    Article  Google Scholar 

  • Sprenger P, Menzel F (2020) Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecological News 30:1–26. https://doi.org/10.25849/myrmecol.news_030:001

    Article  Google Scholar 

  • Thorne BL (1980) Differences in nest architecture between the Neotropical arboeal termites Nasutitermes corniger and Nasutitermes ephratae (Isoptera: Termitidae). Psyche 87:235–243

    Article  Google Scholar 

  • Thorne BL (1982) Polygyny in termites: multiple primary queens in colonies of Nasutitermes corniger (Motschuls) (Isoptera: Termitidae). Insectes Soc 29:102–117. https://doi.org/10.1007/BF02224531

    Article  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126. https://doi.org/10.1016/j.tree.2006.11.007

    Article  Google Scholar 

  • Trägårdh, I (1907) Description of Termitomimus, a new genus of termitophilous physogastric Aleocharinae, with notes on its anatomy. Zool stud till Prof T Tullberg 172-190

  • Traniello JF (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci USA 78:1976–1979

    Article  CAS  Google Scholar 

  • Vane-Wright RI (1980) On the definition of mimicry. Biol J Lin Soc 13:1–6. https://doi.org/10.1111/j.1095-8312.1980.tb00066.x

    Article  Google Scholar 

  • von Beeren C, Schulz S, Hashim R, Witte V (2011) Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol 11:30. https://doi.org/10.1186/1472-6785-11-30

    Article  Google Scholar 

  • von Beeren C, Hashim R, Witte V (2012) The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J Chem Ecol 38:262–271. https://doi.org/10.1007/s10886-012-0083-0

    Article  CAS  Google Scholar 

  • von Beeren C, Maruyama M, Kronauer DJC (2016) Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles. Mol Ecol 25:990–1005. https://doi.org/10.1111/mec.13500

    Article  Google Scholar 

  • von Beeren C, Brückner A, Maruyama M et al (2018) Chemical and behavioral integration of army ant-associated rove beetles – a comparison between specialists and generalists. Front Zool 15:8. https://doi.org/10.1186/s12983-018-0249-x

    Article  CAS  Google Scholar 

  • Warren E (1920) Observations on the comparative anatomy of the termitophilous Aleocharine Paracorotoca akermani (Warren). Ann Natal Museum 4:297–366

    Google Scholar 

  • Wasmann E (1895) Die Ameisen-und Termitengäste von Brasilien. I. Teil. Mit einem Anhange von Dr. August Forel, Verhandlungen der kaiserlich-königlichen. Zool-Botanischen Gesellschaft in Wien 45:137–179

    Google Scholar 

  • Wasmann E, Aachen S (1925) Die Ameisenmimikry. Naturwissenschaften 13:944–951

    Article  Google Scholar 

  • Wasmann E (1894) Kritisches Verzeichniss der myrmekophilen und termitophilen Arthropoden: Mit Angabe der Lebensweise und mit Beschreibung neuer Arten. FL Dames

  • Watson JAL, Kistner DH (1985) Australoptochus phoreticus, a new genus and species of Termitogastrina (Coleoptera, Staphylinidae, Aleocharinae) from nests of the Australian termite, Nasutitermes graveolus (Isoptera: Termitidae). Sociobiology 11:87–106

    Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press, Cambridge

    Google Scholar 

  • Zareyan S, Otto SP, Hauert C (2019) A sheep in wolf’s clothing: levels of deceit and detection in the evolution of cue-mimicry. Proc Royal Soc b: Biol Sci 286:20191425. https://doi.org/10.1098/rspb.2019.1425

    Article  Google Scholar 

  • Zilberman B (2018) New species and synonymy in the genus Corotoca Schiødte, 1853 (Coleoptera, Aleocharinae, Corotocini). Zootaxa 4434:547. https://doi.org/10.11646/zootaxa.4434.3.9

    Article  Google Scholar 

  • Zilberman B (2020) Phylogenetic analysis of the genus Corotoca, with description of a new genus and species from Brazil (Coleoptera, Staphylinidae, Aleocharinae). Insect Syst Evol 1:1–45. https://doi.org/10.1163/1876312x-bja10005

    Article  Google Scholar 

  • Zilberman B, Pires-Silva CM, Moreira IE et al (2019) State of knowledge of viviparity in Staphylinidae and the evolutionary significance of this phenomenon in Corotoca Schiødte, 1853. Papéis Avulsos de Zoologia 59:e20195919. https://doi.org/10.11606/1807-0205/2019.59.19

    Article  Google Scholar 

  • Zilberman B, Fontes LR (2020) New species and morphological notes on the termitophilous genera Fonsechellus Silvestri and Oecidiophilus Silvestri from Brazil (Staphylinidae, Aleocharinae, Corotocini, Termitoceina). Pap Avulsos Zool 60. https://doi.org/10.11606/1807-0205/2020.60.special-issue.21

Download references

Acknowledgements

We thank Antônia M. D. Pires, Pedro A. Pires Silva, and Júlia M. A. Pimentel for their help during fieldwork. We thank the two anonymous reviewers for the extremely careful reading and suggestions, which undoubtedly improved a lot the manuscript. The present study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). CPS is funded under Grant 88887.639836/2021-00; BZ, 88882.377147/2019-01 and IE, 14584/2018-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Pires-Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Sean O'Donnell and Matthias Waltert

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information 

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 23971 KB) Online Resource 1. Individual of Thyreoxenus alakazam Pires-Silva, Zilberman and Eloi sp. nov. dropping a grayish droplet (i.e., exudate) on the body of a termite worker. Note that no subsequent actions were recorded.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires-Silva, C.M., Zilberman, B. & Eloi, I. Different faces, same attitudes: behavioral mimicry and description of a new termitophilous species of the remarkable rove beetle genus Thyreoxenus (Staphylinidae, Aleocharinae, Corotocini) from Brazil with notes on post-imaginal growth. Sci Nat 109, 53 (2022). https://doi.org/10.1007/s00114-022-01820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-022-01820-x

Keywords

Navigation