Skip to main content
Log in

Phenological variation in parasite load and inflammatory response in a lizard with an asynchronous reproductive cycle

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

We present the first study that compares phenological variation in parasite load and inflammatory response in a lizard with asynchronous male and female gonadal cycles. Other studies have used many species with seasonal and synchronous reproductive cycles, in which it is difficult to decouple the effects of internal and external factors that can affect parasite abundance in each sex. Species with asynchronous reproductive cycles provide the opportunity to study the effects of seasonality and reproductive condition separately, but few studies have documented variation in parasite abundance in these species. We made an extensive comparison of parasite load and inflammatory response of the lizard Sceloporus torquatus, a species with asynchronous reproductive cycles, throughout its active period. We hypothesized that the parasite load would be higher in the period of maximum gonadal activity for each sex, negatively related to body condition and inflammatory response. Our results partially support the hypothesis; males had more parasites in summer than in spring and autumn, while females had more parasites in spring and summer than in autumn; however, we do not find a relationship between parasite load, body condition and inflammatory response. Our results indicated that host-parasite interactions are complex and depend upon both environmental and internal factors. Therefore, longer-term studies may provide a more comprehensive picture of host-parasite dynamics in populations of wild lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available upon request.

Code availability

Not applicable.

References

  • Aldridge RD, Siegel DS, Goldberg SR, Pyron RA (2020) Seasonal timing of spermatogenesis and mating in Squamates: a reinterpretation. Copeia 108:231–364

    Article  Google Scholar 

  • Álvarez-Ruiz L, Megía-Palma R, Reguera S, Ruiz S, Zamaora-Camacho FJ, Figuerola J, Moreno-Rueda G (2018) Opposed elevational variation in prevalence and intensity of endoparasites and their vectors in a lizard. Curr Zool 64:197–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Amo L, López P, Martín J (2004) Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola. Parasitol Res 94:290–293

    Article  CAS  PubMed  Google Scholar 

  • Amo L, López P, Martín J (2005) Prevalence and intensity of haemogregarine blood parasites and their mite vectors in the common wall lizard, Podarcis muralis. Parasitol Res 96:378–381

    Article  CAS  PubMed  Google Scholar 

  • Araujo Filho JA, Brito SV, Lima VF, Pereira AMA, Mesquita DO, Alburquerque RL, Almeida WO (2017) Influence of temporal variation and host condition on helminth abundance in the lizard Tropidus hispidus from north-eastern Brazil. J Helminthol 91:312–319

    Article  Google Scholar 

  • Argaez V, Solano-Zavaleta I, Zúñiga-Vega JJ (2020) Do ectoparasites affect survival of three species of lizards of the genus Sceloporus? Zoology 138:125723

    Article  PubMed  Google Scholar 

  • Artim JM, Nicholson MD, Hendrick GC, Brandt M, Smith TB, Sikkel PC (2020) Abundance of a cryptic generalist parasite reflects degradation of an ecosystem. Ecosphere 11:e03268

    Article  Google Scholar 

  • Balenger SL, Zuk M (2014) Testing the Hamilton-Zuk hypothesis: past, present, and future. Am Zool 54:601–613

    CAS  Google Scholar 

  • Barrientos R, Megía-Palma R (2021) Associated costs of mitigation-driven translocation in small lizards. Amphib-reptil 1(aop):1–8

  • Belliure J, Smith L, Sorci G (2004) Effect of testosterone on T cell-mediated immunity in two species of Mediterranean lacertid lizards. J Exp Zool A Comp Exp Biol 301(5):411–418

    Article  PubMed  CAS  Google Scholar 

  • Boretto JM, Ibargüengoytía NR (2009) Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and Comparison of sexual dimorphism within the genus. J Herpetol 43:96–104

    Article  Google Scholar 

  • Clopton RE, Gold RE (1993) Distribution and seasonal and diurnal activity patterns of Eutrombicula alfreddugesi (Acari: Trombiculidae) in a forest edge ecosystem. J Med Entomol 30:47–53

    Article  CAS  PubMed  Google Scholar 

  • Comas M (2020) Body condition, sex and elevation in relation to mite parasitism in high mountain gecko. J Zool 310:298–305

    Article  Google Scholar 

  • Combes C (1997) Fitness of parasites: Pathology and selection. Int J Parasitol 27:1–10

    Article  CAS  PubMed  Google Scholar 

  • CONAGUA (2021) Comisión Nacional del Agua. Mexico City: Servicio Metereológico Nacional. Retrieved from https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica

  • Cook EG, Murphy TG, Johnson MA (2013) Colorful displays signal male quality in a tropical anole lizard. Sci Nat 100:993–996

    Article  CAS  Google Scholar 

  • Cox RM, Skelly SL, John-Alder HB (2005) Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): implications for energy allocation and sexual size dimorphism. Physiol Biochem Zool 78(4):531–545

    Article  CAS  PubMed  Google Scholar 

  • Curtis JL, Baird TA (2008) Within-population variation in free-living adult and ectoparasitic larval trombiculid mites on collared lizards. Herpetologica 64:189–199

    Article  Google Scholar 

  • Díaz JA Alonso-Gómez AL Delgado MJ (1994) Seasonal variation of gonadal development, sexual steroids, and lipid reserves in a population of the lizard Psammodromus algirus. J Herpetol 199–205

  • Dudek K, Skórka P, Sajkowska ZA, Ekner-Grzyb A, Dudek M, Tryjanowski P (2016) Distribution pattern and number of tick on lizards. Ticks Tick Borne Dis 7:172–179

    Article  PubMed  Google Scholar 

  • Feria-Ortiz M, Nieto-Montes de Oca A, Salgado-Ugarte IH (2001) Diet and reproductive biology of the viviparous lizard Sceloporus torquatus torquatus (Squamata: Phrynosomatidae). J Herpetol 35:104–112

    Article  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • French SS, Moore MC (2007) Immune function varies with reproductive stage and context in female and male tree lizards. Urosaurus Ornatus Gen Comp Endocrinol 155:148–156

    Article  PubMed  CAS  Google Scholar 

  • French SS, Johnston GIH, Moore MC (2007a) Immune activity suppresses reproduction in food-limited female tree lizards Urosaurus ornatus. Funct Ecol 21:1115–1122

    Article  Google Scholar 

  • French SS, McLemore R, Vernon B, Johnston GI, Moore MC (2007b) Corticosterone modulation of reproductive and immune systems trade-offs in female tree lizards: long-term corticosterone manipulations via injectable gelling material. J Exp Biol 210:2859–2865

    Article  CAS  PubMed  Google Scholar 

  • Gadsden H, Ortiz-Lomas C, Gil-Martinez R, Leyva-Pacheco SV, Estrada-Rodriguez JL, Smith G (2008) Reproductive cycle of the spiny lizard Sceloporus jarrovii from the central Chihuahuan Desert, México. Herpetol Rev 18:205–211

    Google Scholar 

  • Gandon S, Agnew P, Michalakis Y (2002) Coevolution between parasite virulence and host life-history traits. Am Nat 160:374–388

    Article  PubMed  Google Scholar 

  • González-Morales JC, Quintana E, Díaz-Albiter H, Guevara-Fiore P, Fajardo V (2015) Is erythrocyte size a strategy to avoid hypoxia in Wiegmann’s Torquate Lizards (Sceloporus torquatus)? Field evidence. Can J Zool 93:377–382

    Article  CAS  Google Scholar 

  • Graham SP, Freidenfelds NA, McCormick GL, Langkilde T (2012) The impacts of invaders: basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen Compar Endocrinol 176:400–408

    Article  CAS  Google Scholar 

  • Guan M, Han B (2019) Association between intestinal worm infection and malnutrition among rural children aged 9–11 years old in Guizhou Province. China BMC Public Health 19:1204

    Article  PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Gillooly JF (2011) The cost of sex: quantifying energetic investment in gamete production by males and females. PLOS One 6:e16557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia VJ, Vicente N, Robles C, Halloy M (2014) Mites in the neotropical lizard Liolaemus pacha (Iguania: Liolaemidae): Relation to body size, sex and season. South Am J Herpetol 9:14–19

    Article  Google Scholar 

  • Hudson SB, Kluever BM, Webb AC, French SS (2020) Steroid hormones, energetic state, and immunocompetence vary across reproductive contexts in a parthenogenetic lizard. Gen Comp Endocrinol 288:113372

    Article  CAS  PubMed  Google Scholar 

  • Huyghe K, Van Oystaeyen A, Pasmans F, Tadić Z, Vanhooydonck B, Van Damme R (2010) Seasonal changes in parasite load and a cellular immune response in a colour polymorphic lizard. Oecologia 163(4):867–874

    Article  PubMed  Google Scholar 

  • INEGI (2009) Instituto Nacional de Estadística, Geografía e Informática. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Geostatisticalkey 15098.

  • Jackson LN, Bateman HL (2018) Differing ectoparasite loads, sexual modes, and abundances of whiptail lizards from native and non-native habitats. Herpetol Conserv Biol 13:294–301

    Google Scholar 

  • Klukowski M (2004) Seasonal changes in abundance of host-seeking chiggers (Acari: Trombiculidae) and infestations on fence lizards, Sceloporus undulatus. J Herpetol 38:141–144

    Article  Google Scholar 

  • Klukowski M, Nelson CE (2001) Ectoparasite loads in free-ranging northern fence lizards, Sceloporus undulatus hyacinthinus: effects of testosterone and sex. Behav Ecol Sociobiol 49:289–295

    Article  Google Scholar 

  • Kopena R, López P, Majlathova V, Martín J (2020) Sexually dichromatic coloration of female Iberian green lizards correlates with health state and reproductive investment. Behav Ecol Sociobiol 74:1–12

    Article  Google Scholar 

  • Leceta J, Zapata A (1986) Seasonal variations in the immune response of the tortoise Mauremys caspica. Immunology 57:483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liner EA, Olson RE (1973) Adults of the lizard Sceloporus torquatus binocularis Dunn. Herpetologica 29:53–55

    Google Scholar 

  • Margolis L, Esch GW, Holmes JC, Kuris AM, Schad G (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol 68:131–133

    Article  Google Scholar 

  • Marler CA, Moore MC (1989) Time and energy costs of aggression in testosterone-implanted free-living male mountain spiny lizards (Sceloporus jarrovi). Physiol Zool 62(6):1334–1350

    Article  CAS  Google Scholar 

  • Martin LB, Han P, Lewittes J, Kuhlman JR, Klasing KC, Wikelski M (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20(2):290–299

    Article  Google Scholar 

  • Martín J, Amo L, López P (2008) Parasites and health affect multiple sexual signals in male common wall lizards. Podarcis Muralis Naturwissenschaften 95(4):293–300

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Ibargüengoytía NR (2010) How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J Arid Environ 74:1024–1032

    Article  Google Scholar 

  • Meylan S, Richard M, Bauer S, Haussy C, Miles D (2013) Costs of mounting an immune response during pregnancy in a lizard. Physiol Biochem Zool 86:127–136

    Article  CAS  PubMed  Google Scholar 

  • Minchella DJ (1985) Host life-history variation in response to parasitism. Parasitology 90:205–216

    Article  Google Scholar 

  • Moore MC (1986) Elevated testosterone levels during nonbreeding-season territoriality in a fall-breeding lizard, Sceloporus jarrovi. J Comp Physiol A 158:159–163

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Wapstra E, Madsen T, Silverin B (2000) Testosterone, ticks and travels: a test of the immunocompetence-handicap hypothesis in free-ranging male sand lizards. Proc Royal Soc B 267:2339–2343

    Article  CAS  Google Scholar 

  • Olsson M, Wapstra E, Madsen T, Ujvari B, Rugfelt C (2005) Costly parasite resistance: a genotype-dependent handicap in sand lizards? Biol Lett 1:375–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson JE, Blouin-Demers G (2020) High tolerance of two parasites in ornate tree lizards reduces the fitness costs of parasitism. J Zool 312:102–110

    Article  Google Scholar 

  • Patterson J, Ruckstuhl K (2013) Parasite infection and host group size: a meta-analytical review. Parasitology 140:803–813

    Article  PubMed  Google Scholar 

  • Pollock NB, John-Alder HB (2020) Sex-and age-specific effects are superimposed on seasonal variation in mite parasitism in Eastern Fence Lizards (Sceloporus undulatus). J Herpetol 54:273–281

    Article  Google Scholar 

  • Pollock NB, Vredevoe LK, Taylor EN (2012) The effect of exogenous testosterone on ectoparasite loads in free-ranging western fence lizards. J Exp Zool A Ecol Genet Physiol 317:447–454

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. Buena, Austria: R foundation for statistical computing. Available from https://www.Rproject.org

  • Råberg L, Graham AL, Read AF (2009) Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 364:37–49

    Article  PubMed  Google Scholar 

  • Rieff GG, Natal-da-Luz T, Sousa JP, Sá ELS (2014) Diversity of springtails and mites of a native forest in southern Brazil: relationship with the indices of temperature and precipitation in the native environment. Int J Emerg Technol Adv Eng 4:684–692

    Google Scholar 

  • Roff DA, Mostowy S, Fairbairn DJ (2002) The evolution of trade-offs: testing predictions on response to selection and environmental variation. Evolution 56:84–95

    Article  PubMed  Google Scholar 

  • Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    Article  PubMed  Google Scholar 

  • Sacchi R, Capelli E, Scali S, Pellitteri-Rosa D, Ghitti M, Acerbi E, Pingitore E (2014) In vitro temperature dependent activation of T-lymphocytes in Common wall lizards (Podarcis muralis) in response to PHA stimulation. Acta Herpetologica 9(2):131–138

    Google Scholar 

  • Salathé M, Kouyos RD, Regoes RR, Bonohoeffer S (2008) Rapid parasite adaptation drive selection for high recombination rates. Evolution 62:295–300

    Article  PubMed  Google Scholar 

  • Sánchez CA, Becker DJ, Teitelbaum CS, Barriga P, Brown LM, Majewska AA, Hall RJ, Altizer S (2018) On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol Lett 21:1869–1884

    Article  PubMed  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Šimková A, Jarkovský J, Koubková B, Baruš V, Prokeš M (2005) Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Parasitol Res 95:65–72

    Article  PubMed  Google Scholar 

  • Sinervo B, Miles DB, Frankino WA, Klukowski M, DeNardo DF (2000) Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav 38:222–233

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Sci Nat 87:476–486

    Article  CAS  Google Scholar 

  • Trivers R (1972) Parental investment and sexual selection. In: Campbell B, ed. Sexual Selection and the Descent o fMan 1871–1971: Aldine Press. pp 139–179

  • Uller T Isaksson C Olsson M (2006) Immune challenge reduces reproductive output and growth in a lizard. Funct Ecol 873–879

  • Weiss SL (2006) Female-specific color is a signal of quality in the striped plateau lizard (Sceloporus virgatus). Behav Ecol 17:726–732

    Article  Google Scholar 

  • Weiss SL, Kennedy EA, Bernhard JA (2009) Female-specific ornamentation predicts offspring quality in the striped plateau lizard, Sceloporus virgatus. Behav Ecol 20:1063–1071

    Article  Google Scholar 

  • Weiss SL, Kennedy EA, Safran RJ, McGraw KJ (2011) Pterin-based ornamental coloration predicts yolk antioxidant levels in female striped plateau lizards (Sceloporus virgatus). J Anim Ecol 80:519–527

    Article  PubMed  Google Scholar 

  • Wieczorek M, Rektor R, Najbar B, Morelli F (2020) Tick parasitism is associated with home range area in the sand lizard, Lacerta agilis. Amphib-Reptil 41:479–488

    Article  Google Scholar 

  • Wiegmann AFA (1828) Beyträge zur Amphibienkunde. Isis 21:364–383

  • Wu Q, Richard M, Rutschmann A, Miles DB, Clobert J (2019) Environmental variation mediates the prevalence and co-occurrence of parasites in the common lizard, Zootoca vivipara. BMC Ecol 19:1–11

    Article  Google Scholar 

  • Zahavi A (1975) Mate selection—a selection for a handicap. J Theoret Biol 53:205–214

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks go to Gabriel Suárez and Luis Macotela for field assistance and Mercedes Pichardo for their help and technical support

We are grateful to the Consejo Nacional de Ciencia y Tecnología (Ph.D. degree scholarship JRR and JCGM) and the Secretaría del Medio Ambiente y Recursos Naturales for the permits to collect animals (SGPA/DGVS/02407/15). We also thank Dra. Erendira Quintana Sánchez for field assistance. The authors thank the two anonymous reviewers for their comments to improve the manuscript.

Funding

This work was funded by Consejo Nacional de Ciencia y Tecnología (Ph.D. degree scholarship Jimena Rivera-Rea).

Author information

Authors and Affiliations

Authors

Contributions

JRR, VF and JM designed research; JRR and JCGM performed research; JM and VF supervised project; JRR and RMP analyzed data; JRR, RMP, JCGM and VF wrote manuscript with contributions from JM and EB. All authors edited and approved the final manuscript.

Corresponding author

Correspondence to Víctor Fajardo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Oliver Hawlitschek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Rea, J., González-Morales, J.C., Fajardo, V. et al. Phenological variation in parasite load and inflammatory response in a lizard with an asynchronous reproductive cycle. Sci Nat 109, 34 (2022). https://doi.org/10.1007/s00114-022-01793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-022-01793-x

Keywords

Navigation