Skip to main content

Advertisement

Log in

Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Bees are important pollinators whose population has declined due to several factors, including infections by parasites and pathogens. Resource sharing may play a role in the dispersal dynamics of pathogens among bees. This study evaluated the occurrence of viruses (DWV, BQCV, ABPV, IAPV, KBV, and CBPV) and microsporidia (Nosema ceranae and Nosema apis) that infect Apis mellifera, as well as pesticide residues in the stingless bees Nannotrigona testaceicornis, Tetragonisca angustula, and Tetragona elongata sharing the same foraging area with A. mellifera. Stingless bees were obtained from 10 nests (two of N. testaceicornis, five of T. angustula, and three of T. elongata) which were kept in the field for 1 year and analyzed for the occurrence of pathogens. Spores of N. ceranae were detected in stingless bees but were not found in their midgut, which indicates that these bees are not affected, but may be vectors of the microsporidium. Viruses were found in 23.4% of stingless bees samples. APBV was the most prevalent virus (10.8%) followed by DWV and BQCV (both in 5.1% of samples). We detected glyphosate and its metabolites in small amounts in all samples. The highest occurrence of N. ceranae spores and viruses was found in autumn-winter and may be related to both the higher frequency of bee defecation into the colony and the low food resources available in the field, which increases the sharing of plant species among the stingless bees and honey bees. This study shows the simultaneous occurrence of viruses and spores of the microsporidium N. ceranae in asymptomatic stingless bees, which suggest that these bees may be vectors of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez LJ, Reynaldi FJ, Ramello PJ, Garcia MLG, Squazza GH, Abrahamovich AH, Lucia M (2018) Detection of honey bee viruses in Argentinian stingless bees (Hymenoptera: Apidae). Ins Soc 65:191–197

    Google Scholar 

  • Anguiano-Baez R, Guzman-Novoa E, Hamiduzzaman MM, Espinosa-Montano LG, Correa-Benitez A (2016) Varroa destructor (Mesostigmata: Varroidae) parasitism and climate differentially influence the prevalence, levels, and overt infections of deformed wing virus in honey bees (Hymenoptera: Apidae). J Ins Sci 16:44

    Google Scholar 

  • Araujo RS, Bernardes RC, Fernandes KM, Pereira Lima MA, Martins GF, Tavares MG (2019) Spinosad-mediated effects in the post-embryonic development of Partamona helleri (Hymenoptera: Apidae: Meliponini). Environ Pollut 253:11–18

    CAS  PubMed  Google Scholar 

  • Balbuena MS, Tison L, Hahn ML, Greggers U, Menzel R, Farina WM (2015) Effects of sublethal doses of glyphosate on honeybee navigation. J Exp Biol 218:2799–2805

    PubMed  Google Scholar 

  • Barbosa WF, Tomé HVV, Bernardes RC, Lima MAP, Smagghe G, Guedes RNC (2015) Biopesticide-induced alterations in stingless bee species. Environ Toxicol Chem 34:2149–2158

    CAS  PubMed  Google Scholar 

  • Barron AB (2015) Death of the bee hive: understanding the failure of an insect society. Curr Opin Insect Sci 10:45–50

    PubMed  Google Scholar 

  • Benjeddou M, Leat N, Allsopp M, Davison S (2001) Detection of acute bee paralysis virus and black queen cell virus from honey bees by reverse transcriptase PCR. Appl Environ Microbiol 67:2384–2387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt A, Grikscheit K, Siede R, Grosse R, Meixner MD, Buechler R (2017) Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci Rep 7:4673

    PubMed  PubMed Central  Google Scholar 

  • Brosi BJ, Daily GC, Chamberlain CP, Mills M (2009) Detecting changes in habitat-scale bee foraging in a tropical fragmented landscape using stable isotopes. For Ecol Manag 258:1846–1855

    Google Scholar 

  • Camargo JMF, Pedro SRM (2007) Meliponini Lepeletier, 1836. In: Moure JS, Urban D, Melo GAR (eds) Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region. Sociedade Brasileira de Entomologia, Curitiba, pp 272–578

    Google Scholar 

  • Cantwell GR (1970) Standard methods for counting Nosema spores. Am Bee J 110:222–223

    Google Scholar 

  • Castilhos D, Bergamo GC, Gramacho KP, Goncalves LS (2019) Bee colony losses in Brazil: a 5-year online survey. Apidologie 50:263–272

    Google Scholar 

  • Chen YP, Evans JD (2007) Historical presence of Israel acute paralysis virus in the United States. Am Bee J 147:1027–1028

    Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    CAS  PubMed  Google Scholar 

  • Chen YP, Pettis JS, Feldlaufer MF (2005) Detection of multiple viruses in queens of the honey bee Apis mellifera L. J Invert Pathol 90:118–121

    Google Scholar 

  • Chen YP, Evans JD, Feldlaufer M (2006) Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J Invert Pathol 92:152–159

    Google Scholar 

  • Chen YW, Chung WP, Wang CH, Solter LF, Huang WF (2012) Nosema ceranae infection intensity highly correlates with temperature. J Invert Pathol 111:264–267

    Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Ins Molec Biol 15:615–636

    CAS  Google Scholar 

  • Collison EJ, Hird H, Cresswell J, Tyler C (2016) Interactive effects of pesticide exposure and pathogen infection on bee health - a critical analysis. Biol Rev 91:1006–1019

    PubMed  Google Scholar 

  • Collison EJ, Hird H, Tyler CR, Cresswell JE (2018) Effects of neonicotinoid exposure on molecular and physiological indicators of honey bee immunocompetence. Apidologie 49:196–208

    CAS  Google Scholar 

  • Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582

    Google Scholar 

  • Coulon M, Schurr F, Martel A-C, Cougoule N, Begaud A, Mangoni P, Di Prisco G et al (2019) Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS One 14:e0220703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 45:626–636

    Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F et al (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci USA 110:18466–18471

    PubMed  PubMed Central  Google Scholar 

  • Dorneles AL, Rosa AS, Blochtein B (2017) Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie 48:612–620

    CAS  Google Scholar 

  • Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983

    CAS  PubMed  Google Scholar 

  • FAO (2004) Conservation and management of pollinators for sustainable agriculture – the international response. In: Freitas BM, Pereira JOP (eds) Solitary bees: conservation, rearing and management for pollination. Imprensa Universitária, Fortaleza, p 2–19

  • Freuze I, Jadas-Hecart A, Royer A (2007) Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water. J Chromat A 1175:197–206

    CAS  Google Scholar 

  • Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invert Pathol 103:73–79

    Google Scholar 

  • Giacobino A, Molineri AI, Pacini A, Fondevila N, Pietronave H, Rodriguez G, Palacio A, Bulacio Cagnolo N, Orellano E, Salto CE, Signorini ML, Merke J (2016) Varroa destructor and viruses association in honey bee colonies under different climatic conditions. Environ Microbiol Rep 8:407–412

    PubMed  Google Scholar 

  • Glavinic U, Tesovnik T, Stevanovic J, Zorc M, Cizelj I, Stanimirovic Z, Narat M (2019) Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae. PeerJ 7:e6325

    PubMed  PubMed Central  Google Scholar 

  • Gomes IN (2017) Bioensaios em laboratório indicam efeitos deletérios de agrotóxicos sobre as abelhas Melipona capixaba e Apis mellifera. Dissertation, Universidade Federal de Viçosa

  • Grassl J, Holt S, Cremen N, Peso M, Hahne D, Baer B (2018) Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. J Invert Pathol 159:78–86

    CAS  Google Scholar 

  • Graystock P, Goulson D, Hughes WO (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc Lond B Biol Sci 282:20151371

    Google Scholar 

  • Guimarães-Cestaro L, Serrão JE, Message D, Matins MF, Teixeira EW (2016) Simultaneous detection of Nosema spp., Ascosphaera apis and Paenibacillus larvae in honey bee products. J Hymenopt Res 49:43–50

  • Guimarães-Cestaro L, Serrão JE, Alves MLTMF, Message D, Teixeira EW (2017a) A scientific note on occurrence of pathogens in colonies of honey bee Apis mellifera in Vale do Ribeira, Brazil. Apidologie 48:384–386

    Google Scholar 

  • Guimarães-Cestaro L, Alves MLTMF, Message D, Silva MVGB, Teixeira EW (2017b) Honey bee (Apis mellifera) health in stationary and migratory apiaries. Sociobiology 64:42–49

    Google Scholar 

  • Guzman-Novoa E, Hamiduzzaman MM, Anguiano-Baez R, Correa-Benitez A, Castaneda-Cervantes E, Arnold NI (2016) First detection of honey bee viruses in stingless bees in North America. J Apicult Res 54:93–95

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    CAS  PubMed  Google Scholar 

  • Herbert LT, Vázquez DE, Andréas A, Farina WM (2014) Effects of field realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217:3457–3464

    PubMed  Google Scholar 

  • Higes M, Martin-Hernandez R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41:375–392

    Google Scholar 

  • Huang Q, Evans JD (2016) Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae. J Invert Pathol 133:107–109

    CAS  Google Scholar 

  • Jacob CRO (2012) Efeitos do inseticida fipronil sobre os corpos pedunculados de operárias de Scaptotrigona postica (Latreille, 1807) (Hymenoptera, Apidae, Meliponini). Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho

  • Jacob CRO, Zanardi OZ, Malaquias JB, Souza Silva CA, Yamamoto PT (2019a) The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae). Chemosphere 224:65–70

    CAS  PubMed  Google Scholar 

  • Jacob CRO, Malaquias JB, Zanardi OZ, Silva CAS, Jacob JFO, Yamamoto PT (2019b) Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology 28:744–753

    CAS  PubMed  Google Scholar 

  • Jaffe R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2016) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278

    Google Scholar 

  • Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invert Pathol 96:1–10

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. 2nd edn. Elsevier Publishers, Amsterdam

  • Lima MAP, Martins GF, Oliveira EE, Guedes RNC (2016) Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202:733–747

    CAS  Google Scholar 

  • Lo N, Gloag RS, Anderson DL, Oldroyd BP (2010) A molecular phylogeny of the genus Apis suggests that the giant honey bee of the Philippines, A. breviligula Maa, and the plains honey bee of southern India, A. indica Fabricius, are valid species. Syst Ent 35:226–233

    Google Scholar 

  • López JH, Krainer S, Engert A, Schuehly W, Riessberger-Galle U, Crailsheim K (2017) Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci Rep 7:40853

    PubMed  PubMed Central  Google Scholar 

  • Lourenço AP, Mackert A, Cristino AS, Simões ZLP (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372–385

    Google Scholar 

  • Lourenço C, Carvalho SM, Malaspina O, Nocelli RCF (2012) Oral toxicity of fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). Bull Environ Contamin Toxicol 89:921–924

    Google Scholar 

  • Machado CS, Carvalho CAL (2006) Bees (Hymenoptera: Apoidea) on sunflower flowers in Recôncavo Baiano region, Brazil. Ciência Rural 36:1404–1409

    Google Scholar 

  • Martínez DA, Loening EE, Graham MC (2018) Impacts of glyphosate-based herbicides on disease resistance and helath of crops: a review. Environ Sci Eur 30:1–14

    Google Scholar 

  • Martin-Hernandez R, Meana A, Prieto L, Salvador AM, Garrido-Bailon E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73:6331–6338

  • Martín-Hernández R, Meana A, García-Palencia P, Marín P, Botías C, Garrido-Bailón E, Barrios L, Hige M (2009) Effect of temperature on the biotic potencial of honey bee microsporidia. Appl Environ Microbiol 75:2554–2557

    PubMed  PubMed Central  Google Scholar 

  • McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease? Floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636

    PubMed  Google Scholar 

  • McMenamin AJ, Genersch E (2015) Honey bee colony losses and associated viruses. Curr Opin Ins Sci 8:121–129

    Google Scholar 

  • Meixner MD, Francis RM, Gajda Kryger P, Andonov S, Uzonov A et al (2014) Occurrence of parasites and pathogens in honeybee colonies used in a European genotype-environment interactions experiment. J Apicult Res 53:215–229

    Google Scholar 

  • Milan M, Dalla RG, Smits M, Ferraresso S, Pastore P, Marin MG, Bogialli S, Patarnello T, Bargelloni L, Matozzo V (2018) Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: transcriptional responses in the mussel Mytilus galloprovincialis. Environ Pollut 237:442–451

    CAS  PubMed  Google Scholar 

  • Miranda J, Cordoni G, Budge G (2010) The acute paralysis virus–Kashmere bee virus–Israeli acute paralysis virus complex. J Invert Pathol 103:30–47

    Google Scholar 

  • Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, Chen YP, Gauthier L, Genersch E, de Graaf DC, Ribière M, Ryabov E, De Smet L, van der Steen JJM (2013) Standard methods for virus research in Apis mellifera. J Apicult Res 52:1–56

    Google Scholar 

  • Mohammadian B, Bokaie S, Moharrami M, Nabian S, Forsi M (2018) Distribution of Nosema spp. in climatic regions of Iran. Vet Res Forum 9:259–263

    PubMed  PubMed Central  Google Scholar 

  • Molineri A, Giacobino A, Pacini A, Cagnolo NB, Fondevila N, Ferrufino C, Merke J, Orellano E, Bertozzi E, Masciangelo G, Pietronave H, Signorini M (2017) Risk factors for the presence of deformed wing virus and acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies. Prev Vet Med 140:106–115

    PubMed  Google Scholar 

  • Morais CR, Nassif Travencolo BA, Carvalho SM, Beletti ME, Vieira Santos VS, Campos CF, Campos Junior EO et al (2018) Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). Chemosphere 206:632–642

    PubMed  Google Scholar 

  • Nazzi F, Pennacchio F (2018) Honey bee antiviral immune barriers as affected by multiple stress factors: a novel paradigm to interpret colony health decline and collapse. Viruses 10:159

    PubMed Central  Google Scholar 

  • Nielsen SL, Nicolaisen M, Kryger P (2008) Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 39:310–314

    CAS  Google Scholar 

  • Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlmann P, Gacía-Criado M, Biesmeijer JC et al (2014) Europena red list of bees. Publication Office of the European Union, Luxembourg, 98p

    Google Scholar 

  • Nunes-Silva P, Piot N, Meeus I, Blochtein B, Smagghe G (2016) Absence of Leishmaniinae and Nosematidae in stingless bees. Sci Rep 6:32547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papini R, Mancianti F, Canovai R, Cosci F, Rocchigiani G, Benelli G, Canale A (2017) Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J Biol Sci 27:979–982

    Google Scholar 

  • Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565

    Google Scholar 

  • Pedro SRM (2014) The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 61:348–354

    Google Scholar 

  • Perry JN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303–314

    Google Scholar 

  • Perry JN (1998) Measures of spatial pattern for counts. Ecology 79:1008–1017

    Google Scholar 

  • Perry JN, Dixon PM (2002) A new method to measure spatial association for ecological count data. Ecosci 9:133–141

    Google Scholar 

  • Perry JN, Winder L, Holand JM, Alston RD (1999) Red-blue plots for clusters in count data. Ecol Lett 2:106–113

    Google Scholar 

  • Porkiss T, Lach L (2019) Pathogen spillover from Apis mellifera to a stingless bee. Proc R Soc B 286:20191071

    Google Scholar 

  • Porrini MP, Porrini LP, Garrido PM, Neto CMS, Porrini DP, Muller F, Nunez LA, Alvarez L, Iriarte PF, Eguaras MJ (2017) Nosema ceranae in South American native stingless bees and social wasp. Microbiol Ecol 74:761–764

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

  • Ramalho M (2004) Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Bot Brasilica 18:37–47

    Google Scholar 

  • Ramalho M, Kleinert-Giovannini A, Imperatriz-Fonseca VL (1990) Important bee plants for stingless bees (Melipona and Trigonini) and Africanized honey bees (Apis mellifera) in neotropical habitats: a review. Apidologie 21:469–488

    Google Scholar 

  • Ribiere M, Triboulot C, Mathieu L, Aurieres C, Faucon JP, Pepin M (2002) Molecular diagnosis of chronic bee paralysis virus infection. Apidologie 33:339–351

    CAS  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng' A, Potts SG, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    PubMed  Google Scholar 

  • Rosa AS, Price RI, Caliman MJF, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2015) The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination. Environ Toxicol Chem 34:1851–1853

    CAS  Google Scholar 

  • Ruiz-González MX, Brown MJF (2006) Honey bee and bumblebee trypanosomatids: specificity and potential for transmission. Ecol Ent 31:616–622

    Google Scholar 

  • Ryba S, Titera D, Schodelbauerova-Traxmandlova I, Kindlmann P (2012) Prevalence of honeybee viruses in the Czech Republic and coinfections with other honeybee disease. Biologia 67:590–595

    Google Scholar 

  • Santos LG, Alves ML, Message D, Pinto FA, Teixeira EW (2014) Honey bee health in apiaries in theVale do Paraíba, São Paulo State, Southeastern Brazil. Sociobiology 61:307–312

    Google Scholar 

  • Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, Vanengelsdorp D, Lipkin WI, Depamphilis CW, Toth AL, Cox-Foster DL (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-apis hymenopteran species. PLoS One 5:e14357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ML (2012) The honey bee parasite Nosema ceranae: transmissible via food exchange? PLoS One 7:e43319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza FS, Kevvil JL, Correia-Oliveira ME, Carvalho CAL, Martin SJ (2019) Occurrence of deformed wing virus variants in the stingless bee Melipona subnitida and honey bee Apis mellifera populations in Brazil. J Gen Virol 100:289–294

    PubMed  Google Scholar 

  • Stefanini M, De Martino C, Zamboni D (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    CAS  PubMed  Google Scholar 

  • Stoltz D, Shen XR, Boggis CC, Sisson G (1995) Molecular diagnosis of Kashmir bee virus infection. J Apicult Res 34:153–160

    CAS  Google Scholar 

  • Szekacs A, Moertl M, Darvas B (2015) Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990-2015. J Chem 2015:717948

    Google Scholar 

  • Tarek H, Hamiduzzaman MM, Morfin N, Guzman-Novoa E (2018) Sub-lethal doses of neonicotinoid and carbamate insecticides reduce the lifespan and alter the expression of immune health and detoxification related genes of honey bees (Apis mellifera). Genet Mol Res 17:gmr16039908

    Google Scholar 

  • Taura HM, Laruoca S (2004) Biologia da polinização: interações entre as abelhas (Hymenoptera, Apoidea) e as flores de Vassobia breviflora (Solanaceae). Acta Biol Par 33:143–162

    Google Scholar 

  • Teixeira EW, Chen Y, Message D, Pettis J, Evans JD (2008) Virus infection in Brazilian honey bees. J Invert Pathol 99:117–119

    CAS  Google Scholar 

  • Teixeira EW, Santos LG, Sattler A, Message D, Alves MLTMF, Martins MF, Grassi-Sella MF, Francoy TM (2013) Nosema ceranae has been present in Brazil for more than three decades infecting Africanized honey bees. J Invert Pathol 114:250–254

    Google Scholar 

  • Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F, Colin ME, Bergoin M (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tesovnik T, Zorc M, Gregorc A, Rinehart T, Adamczyk J, Narat M (2019) Immune gene expression in developing honey bees (Apis mellifera L.) simultaneously exposed to imidacloprid and Varroa destructor in laboratory conditions. J Apicult Res 58:730–739

    Google Scholar 

  • Thompson HM, Levine SL, Doering J, Norman S, Manson P, Sutton P, von Mérey G (2014) Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr Environ Assess Manag 10:463–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406

    PubMed  PubMed Central  Google Scholar 

  • Toplak I, Ciglenecki UJ, Aronstein K, Gregorc A (2013) Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses-Basel 5:2282–2297

    Google Scholar 

  • Ueira-Vieira C, Almeida LO, Amaral FC, Brandeburgo MAM, Bonetti AM (2015) Scientific note on the first molecular detection of the acute bee paralysis virus in Brazilian stingless bees. Apidologie 46:628–630

    Google Scholar 

  • Vojvodic S, Jensen AB, James RR, Boomsma JJ, Eilenberg J (2011) Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood. Vet Microbiol 149:200–205

    CAS  PubMed  Google Scholar 

  • Walderdorff L, Laval-Gilly P, Bonnefoy A, Falla-Angel J (2018) Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. J Ins Physiol 108:17–24

    CAS  Google Scholar 

  • Whitaker J, Szalanski AL, Kence M (2011) Molecular detection of Nosema ceranae and N. apis from Turkish honey bees. Apidologie 42:174–180

    Google Scholar 

  • Wilms W, Wiechers B (1997) Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 28:339–355

    Google Scholar 

  • Wolken WAM, Trampe J, van der Derf MJ (2003) What spores can do for us? Trends Biotechnol 21:338–334

    CAS  PubMed  Google Scholar 

  • Yang EC, Chang HC, Wu WY, Chen YW (2012) Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7:e49

    Google Scholar 

  • Yue C, Schroeder M, Bienefeld K, Genersch E (2006) Detection of viral sequences in semen of honeybees (Apis mellifera): Evidence for vertical transmission of viruses through drones. J Invert Pathol 92:105–108

Download references

Acknowledgments

This research was supported by Brazilian research agencies CNPq, CAPES, FAPEMIG, and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Eduardo Serrão or Érica Weinstein Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Communicated by: Vincent Doublet

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães-Cestaro, L., Martins, M.F., Martínez, L.C. et al. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci Nat 107, 16 (2020). https://doi.org/10.1007/s00114-020-1670-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-020-1670-5

Keywords

Navigation