Skip to main content
Log in

A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra

  • Review
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Terrestrial salamanders of the genus Salamandra represent one of the most prominent groups of amphibians. They are mainly distributed across Europe but also reach Northern Africa and the Near East. Members of the six currently accepted species have long been known to be poisonous; however, work on their toxins was mostly published in German language, and therefore, many nuances of these studies have remained hidden from the majority of herpetologists and toxinologists. Several Salamandra species are called fire salamanders due to their highly contrasted, black-yellow colouration which probably serves to deter predators, although thorough evidence for aposematism in Salamandra is still lacking. Salamandra skin toxins do not only represent a potent antipredator defence but may also have antimicrobial effects. A better understanding of this dual function of Salamandra skin secretions is of utmost importance in the face of the emergence of a fungal disease causing catastrophic declines of fire salamanders in Central Europe, caused by the fungus Batrachochytrium salamandrivorans. In this review, we summarize the knowledge on Salamandra toxins, providing a list of the compounds so far isolated from their secretion and focusing on the bioactivity of the major compounds in Salamandra secretions, the steroidal alkaloids. We identify priorities for future research, including a screening of co-occurrence of steroidal alkaloids and tetrodotoxins in salamandrids, chemical characterization of already identified novel steroidal compounds, elucidation of the presence and role of peptides and proteins in the secretion, and experimental in vitro and in vivo study of the interactions between bioactive compounds in Salamandra skin secretions and cutaneous fungal and bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreone F, Clima V, De Michelis S (1999) On the ecology of Salamandra lanzai Nascetti, Andreone, Capula & Bullini, 1988. Number and movement of individuals, and influence of climate on activity in a population of the upper Po valley (Caudata: Salamandridae). Herpetozoa 12:3–10

    Google Scholar 

  • Anonymous (1529) Gart der Gesundheit, zu Latin ortus sanitatis. Von allerley Thieren Vögeln/Vischen oder Mözwundern und Edlem gestein/daruß gezogen von den natürlichen Meistern/was dem menschen zu seiner Gesundheit dienet/mit höchstem flesß durch sücht/korrigiert/und gebessert. Strassburg

  • Balogová M, Uhrin M (2015) Sex-biased dorsal spot patterns in the fire salamander (Salamandra salamandra). Salamandra 51:12–18

    Google Scholar 

  • Balogová M, Kyselová M, Šafárik J, Uhrin M (2016) Changes in dorsal spot pattern in adult Salamandra salamandra (Linnaeus, 1758). Herpetozoa 28:167–171

    Google Scholar 

  • Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 6:693–755

    CAS  Google Scholar 

  • Bas S, Gasser F (1994) Polytypism of Salamandra salamandra (L.) in north-western Iberia. Mertensiella 4:41–74

    Google Scholar 

  • Becher JJ (1663) Parnassus medicinalis illustratus oder: Ein neues und dergestalt vormatzul noch nie gesehenes Thier-Kräuter- und Berg-Buch samt der Salernischen Schul

  • Becker H (1986) Inhaltsstoffe von Feuer- und Alpensalamander. Pharm Unserer Zeit 15(4):97–106

    CAS  PubMed  Google Scholar 

  • Benn M, Shaw R (1974) A Salamander Alkaloid Synthesis. Can J Chem 52(16):2936–2940

    CAS  Google Scholar 

  • Bettin C, Greven H (1986) Bacteria on the skin of Salamandra salamandra (L.) (Amphibia: Urodela) with notes on their possible significance. Zool Anz 216:267–270

    Google Scholar 

  • Beukema W, Nicieza AG, Lourenco A, Velo-Anton G (2016a) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol Res 54:127–136. https://doi.org/10.1111/jzs.12119

    Article  Google Scholar 

  • Beukema W, Speybroeck J, Velo-Anton G (2016b) Salamandra. Curr Biol 26:696–697

    Google Scholar 

  • Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414

    CAS  PubMed  Google Scholar 

  • Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    PubMed  Google Scholar 

  • Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, Geffers R, Jarek M, Vences M, Steinfartz S (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun 7:13699. https://doi.org/10.1038/ncomms13699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogaerts S (2002) Farbkleidentwicklung bei einigen Feuersalamandern. Amphibia 1:4–10

    Google Scholar 

  • Böhme W (1979) Zum Höchstalter des Feuersalamanders “Salamandra salamandra” (L.), ein wiederentdecktes Dokument aus der Frühzeit der Terraristik (Amphibia: Caudata: Salamandridae). Salamandra 15:176–179

    Google Scholar 

  • Böhme W, Hartmann T, Fleck J, Schöttler T (2013) Miscellaneous notes on Oriental Fire Salamanders (Salamandra infraimmaculata Martens, 1885) (Lissamphibia: Urodela: Salamandridae). Russ J Herpetol 20:66–72

    Google Scholar 

  • Bonato L, Grossenbacher K (2000) On the distribution and chromatic differentiation of the alpine salamander Salamandra atra Laurenti, 1768, between Val Lagarina and Val Sugana (venetian Prealps): an updated review (Urodela: Salamandridae). Herpetozoa 13:171–180

    Google Scholar 

  • Bonato L, Steinfartz S (2005) Evolution of the melanistic colour in the alpine salamander Salamandra atra as revealed by a new subspecies from the Venetian Prealps. Ital J Zool 72:253–260

    Google Scholar 

  • Boulenger EG (1921) Experiments on colour-changes of the spotted salamanders (Salamandra maculosa), conducted in the society’s gardens. Proc Zool Soc Lond 91(1):99–102

    Google Scholar 

  • Bradley SG, Klika LJ (1981) A fatal poisoning from the Oregon rough-skinned newt (Taricha graulosa). J Am Med Assoc 246:247

    CAS  Google Scholar 

  • Brizzie R, Delfino G, Jantra S, Alvarez BB, Sever D (2001) The amphibian cutaneous glands: some aspects of their structure and adaptive role. In: Lymberakis P, Valakos E, Pafilis P, Mylonas M. Herpetologua Candiana, National Museum of Crete: Crete

    Google Scholar 

  • Brodie ED, Smatresk NJ (1990) The antipredator arsenal of fire salamanders: spraying of secretions from highly pressurized dorsal skin glands. Herpetologica 46:1–7

    Google Scholar 

  • Brown DD (1997) The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci U S A 94:13011–13016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bucciarelli GM, Green DB, Shaffer HB, Kats LB (2016) Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proc R Soc B Biol Sci 283(1831):20160468

    Google Scholar 

  • Buckley D, Alcobendas M, Garcia-Paris M, Wake MH (2007) Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol Dev 9:105–115

    PubMed  Google Scholar 

  • Cardoso MH, Cobacho NB, Cherobim MD, Pinto MFS, dos Santos C, Maximiano MR, de Barros EG, Dias SC, Franco OL (2014) Insights into the antimicrobial activities of unusual antimicrobial peptide families from amphibian skin. Clin Toxicol 4:205. https://doi.org/10.4172/2161-0495.1000205

    Article  CAS  Google Scholar 

  • Carretero MA, Rosell C (1999) Salamandra salamandra (fire salamander). Predation. Herp Rev 30:161

    Google Scholar 

  • Caspers BA, Steinfartz S (2011) Preference for the other sex: olfactory sex recognition in terrestrial fire salamanders (Salamandra salamandra). Amphibia-Reptilia 32:503–508

    Google Scholar 

  • Caspers BA, Steinfartz S, Krause ET (2015) Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behav Ecol Sociobiol 69:407–413

    Google Scholar 

  • Dalbeck L, Düssel-Siebert H, Kerres A, Kirst K, Koch A, Lötters S, Ohlhoff D, Sabino-Pinto J, Preißler K, Schulte U, Schulz V, Steinfartz S, Veith M, Vences M, Wagner N, Wegge J (2018) Die Salamanderpest und ihr Erreger Batrachochytrium salamandrivorans (Bsal): aktueller Stand in Deutschland. Z Feldherpetol 25:1–22

    Google Scholar 

  • Daly JW (1998) Thirty years of discovering arthropod alkaloids in amphibian skin. J Nat Prod 61:162–172

    CAS  PubMed  Google Scholar 

  • Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology, and biology. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Wiley, New York

    Google Scholar 

  • Daly JW, Myers W, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25:1023–1095

    CAS  PubMed  Google Scholar 

  • Daly JW, Garrafo HM, Hall GFE, Cover JF Jr (1997) Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135

    CAS  PubMed  Google Scholar 

  • Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garrafo HM, Kaneko T, Spande TF, Nimit Y, Nabhitabhata J, Chan-Ard T (2004) Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon 44:805–815

    CAS  PubMed  Google Scholar 

  • Daly JW, Spande TF, Garrafo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575

    CAS  PubMed  Google Scholar 

  • Dean J, Aneshansley DJ, Edgerton HE, Eisner T (1990) Defensive spray of the bombardier beetle: a biological pulse jet. Science 248(4960):1219–1221

    CAS  PubMed  Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818

    CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kirsch KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich N (1999) Jahreszyklus der Feuersalamander (Salamandra salamandra) des Neißetales – Landkreis Löbau-Zittau. Elaphe 7(2):62–65

    Google Scholar 

  • Dietrich N (2000) Der Schwarzspecht – ein Prädator unseres Feuersalamanders? Elaphe 8:65

    Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of amphibians. JHU, Baltimore

    Google Scholar 

  • Eom J, Jung YR, Park D (2009) F-series prostaglandin function as sex pheromones in the Korean salamander, Hynobius leechii. Comp Biochem Physiol A Mol Integrat Physiol 154:61–69

    Google Scholar 

  • Erjavec V, Lukanc B, Žel J (2017) Intoxication of a dog with alkaloids of the fire salamander. Med Weter 73:186–188

    Google Scholar 

  • Escoubas P (2006) Mass spectrometry in toxinology: a 21st-century technology for the study of biopolymers from venoms. Toxicon 47:609–613

    CAS  PubMed  Google Scholar 

  • Esterly CO (1904) The structure and regeneration of the poison glands of Plethodon. Univ Calif Publ Zool 1:227–268

    Google Scholar 

  • Faust SE (1898) Beiträge zur Kenntniss des Samandarins. Arch Exp Pat Phyl 41:229–245

    Google Scholar 

  • Feldmann R, Klewen R (1981) Feuersalamander Salamandra salamandra terrestris Lacépède, 1788. In: Feldmann R (ed) Die Amphibien und Reptilien Westfalens. Abhandlungen aus dem Landes museum für Naturkunde Münster 43:30–44

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    CAS  PubMed  Google Scholar 

  • Fleck J (2005) Feuersalamanderbiotope in der Türkei. Amphibia 4(1):16–21

    Google Scholar 

  • Francis ETB (1934) The anatomy of the salamander. Clarendon, Oxford

    Google Scholar 

  • Francke H, Partch R (1966) The chemistry of samandarone model compounds. J Med Chem 9(4):643–644

    Google Scholar 

  • Freytag GE (1955) Feuersalamander und Alpensalamander. Wittenberg Lutherstadt (Ziemsen)

  • Frisch K (1920) Über den Einfluss der Bodenfarbe auf die Fleckenzeichnung des Feuersalamanders. Biol Zentralblatt 40:390–414

    Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    CAS  PubMed  Google Scholar 

  • Garcia-Paris M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143

    CAS  PubMed  Google Scholar 

  • Gesner C (1669) Allgemeines Thier-Buch. Deutsche Übersetzung durch C. Forer, Frankfurt

    Google Scholar 

  • Geßner O (1926) Über Amphibiengifte. Ber Ges Beförderung ges Naturwiss (Mahrburg/Lahn) 61:138

    Google Scholar 

  • Geßner O (1928) Über die Wirkung der Krampfgifte Strychnin, Pikrotoxin und Samandarin. Arch Exp Pathol Pharmakol 129:261–270

    Google Scholar 

  • Geßner O (1932) Die Wirkung der Krampfgifte Strychnin, Pikrotoxin und Samandarin auf glattmuskelige Organe. Arch Exp Pathol Pharmakol 167:244–250

    Google Scholar 

  • Geßner O, Craemer K (1930) Zur Darstellung der Salamanderalkaloide aus dem Hautdrüsensekret von Salamandra maculosa. Arch Exp Pathol Pharmakol 152:229–237

    Google Scholar 

  • Geßner O, Esser W (1935a) Über die analeptische Wirkung des Salamanderalkaloides Samandarin. Arch Exp Pathol Pharmakol 178:755–759

    Google Scholar 

  • Geßner O, Esser W (1935b) Samandarin und eine Reihe von Umwandlungs- und Abbauprodukten des Samandarins. Arch Exp Pathol Pharmakol 179:639–645

    Google Scholar 

  • Geßner O, Möllenhoff P (1932) Zur Pharmakologie der Salamander-Alkaloide. Arch Exp Pathol Pharmakol 1671:638–653

    Google Scholar 

  • Geßner O, Urban G (1937) Weitere pharmakologische Untersuchungen zu Samandarin. Arch Exp Pathol Pharmakol 187:378–388

    Google Scholar 

  • Glaubrecht M (1991) Giftschleuder Feuersalamander. Kosmos 2:12

    Google Scholar 

  • Grant JB, Land B (2002) Transcutaneous amphibian stimulator (TAS): a device for the collection of amphibian skin secretions. Herpetol Rev 33:38–41

    Google Scholar 

  • Greven H (1994) Der Feuersalamander. Das Fabeltier und das Objekt moderner zoologischer Forschung. In: Kräubig J (ed) Lurchi- dem Feuersalamander auf der Spur. Galerie der Stadt Kornwestheim, Kornwestheim

    Google Scholar 

  • Greven H (1997) Zur Naturgeschichte des Feuersalamanders in Mitteleuropa. In: Landschaftsverband Rheinland (ed) Der Salamander - ein gar fürchterliches Thier. Rheinland Verlag GmbH, Köln

    Google Scholar 

  • Grice EA, Segre JA (2013) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    Google Scholar 

  • Günter M (1926) Tötung durch Salamandergift. Lacerta 1:3–4

    Google Scholar 

  • Günther E (1998) Die Salamander des Tendi-Tals in Asturien/Nordspanien. Elaphe 6:96–97

    Google Scholar 

  • Habermehl G (1963a) Partialsynthese und absolute Konfiguration des Samandaridins. Chem Ber 96:840–844

    CAS  Google Scholar 

  • Habermehl G (1963b) Die Konstitution und Konfiguration des Samandaridins. Chem Ber 96:143–151

    CAS  Google Scholar 

  • Habermehl G (1964a) Cholesterin und Cholesterinester aus dem Hautdrüsensecret von Salamandra maculosa taeinata. Liebigs Ann Chem 680:104–107

    CAS  Google Scholar 

  • Habermehl G (1964b) O-Acetylsamandarin im Gift von Salamandra maculosa. Liebigs Ann Chem 679:164–167

    CAS  Google Scholar 

  • Habermehl G (1966) Die Konstitution des Samandenons. Chem Ber 99:1439–1442

    CAS  Google Scholar 

  • Habermehl G (1969) Chemistry and biochemistry of amphibian poisons. Naturwissenschaften 56(12):615–622

    CAS  PubMed  Google Scholar 

  • Habermehl G (1994a) The biological relevance of Salamandra venom. Mertensiella 4:209–214

    Google Scholar 

  • Habermehl G (1994b) Gift-Tiere und ihre Waffen, 5 Aufl. Springer. Berlin

    Google Scholar 

  • Habermehl G (1995) Antimicrobial activity of amphibian venoms. Stud Nat Prod Chem 15:327–339

    CAS  Google Scholar 

  • Habermehl G, Göttlicher S (1965) Die Konstitution und Konfiguration des Cycloneosamandions. Chem Ber 98:1–10

    CAS  Google Scholar 

  • Habermehl G, Haaf G (1965) Cycloneosamandaridin, ein neues Nebenalkaloid aus Salamandra maculosa. Chem Ber 98:3001–3005

    CAS  Google Scholar 

  • Habermehl G, Haaf A (1968) Cholesterin als Vorstufe in der Biosynthese der Salamanderalkaloide. Chem Ber 101:198–200

    CAS  PubMed  Google Scholar 

  • Habermehl G, Haaf A (1969) Konstitution und Synthese des Samanins. Liebigs Ann Chem 722:155–161

    CAS  Google Scholar 

  • Habermehl G, Preusser HJ (1969) Hemmung des Wachstums von Bakterien und Pilzen durch das Hautdrüsensekret von Salamandra maculosa. Z Naturforsch 24b:1599–1601

    Google Scholar 

  • Habermehl G, Preusser HJ (1970) Antimikrobielle Aktivität von Amphibien-Hautdrüsen-sekreten. Z Naturforsch 25b:1451–1452

    Google Scholar 

  • Habermehl G, Spiteller G (1967) Massenspektren der Salamander Alkaloide. Liebigs Ann Chem 706:213–222

    CAS  Google Scholar 

  • Habermehl G, Vogel G (1969) Samandinine, a minor alkaloid from Salamandra maculosa Laur. Toxicon 7:163–164

    CAS  PubMed  Google Scholar 

  • Hanifin CT, Gilly WF (2015) Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders. Evolution 69:232–244

    CAS  PubMed  Google Scholar 

  • Hara S, Oka K (1967) A Total synthesis of samandarone. J Am Chem Soc 89:1041–1042

    CAS  PubMed  Google Scholar 

  • Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CH, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    CAS  PubMed  Google Scholar 

  • Harris RN, James TY, Lauer A, Simon MA, Patel A (2016) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. Ecohealth 3:53–56

    Google Scholar 

  • Hayes AR, Piggott AM, Dalle K, Capon RJ (2009) Microbial biotransformation as a source of chemical diversity in cane toad steroid toxins. Bioorg Med Chem Lett 19:1790–1792

    CAS  PubMed  Google Scholar 

  • Herbst C, Ascher F (1927) Beiträge zur Entwicklungsphysiologie der Färbung und Zeichnung der Tiere. III. Der Einfluss der Beleuchtung von unten auf das Farbkleid des Feuersalamanders. Wilhelm Roux’ Arch Entwickl Mech Org 112:1–59

    Google Scholar 

  • Horter M, Greven M (1981) Zur relativen Genießbarkeit juveniler Feuersalamander, Salamandra salamandra (L.) (Amphibia, Urodela). Amphibia-Reptilia 2:15–21

    Google Scholar 

  • Hostalka G (1984) Tod eines Jagdhundes durch Feuersalamander. Wild Hund 87(10):54–55

    Google Scholar 

  • Janssenswillen S, Vandebergh W, Treer D, Willaert B, Maex M, Van Bocxlaer I, Bossuyt F (2015) Origin and diversification of a salamander sex pheromone system. Mol Biol Evol 32:472–480

    PubMed  Google Scholar 

  • Joly J (1968) Données écologiques sur la salamandre tachetée Salamandra salamandra (L.). Ann Sci Nat Zool Biol Anim 19:301–366

    Google Scholar 

  • Kabisch K, Belter H (1968) Das Verzehren von Amphibien durch Vögel. In: Abhandlungen und Berichte aus dem Staatlichen Museum für Tierkunde Dresden 29:191–227

  • Kamalakkannan V, Salim AA, Capon RJ (2017) Microbiome-mediated biotransformation of cane toad bufagenins. J Nat Prod 80:2012–2017

    CAS  PubMed  Google Scholar 

  • Kammerer P (1914a) Vererbung erzwungener Farbveränderungen. IV. Mitteilung: Das Farbkleid des Feuersalamanders (Salamandra maculosa Laurenti) in seiner Abhängigkeit von der Umwelt. Arch Entwickl Mech Org 36:4–193

    Google Scholar 

  • Kammerer P (1914b) Aufklärung zu vorstehenden Bemerkungen des Herrn Professor Baur. Arch Entwickl Mech Org 38:684

    Google Scholar 

  • Kershenbaum A, Blank L, Sinai I, Merilä J, Blaustein L, Templeton AR (2014) Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata. Oecologia 75:509–520. https://doi.org/10.1007/s00442-014-2924-8

    Article  Google Scholar 

  • Kikuyama S, Yamamoto K, Iwata T, Toyoda F (2002) Peptide and protein pheromones in amphibians. Comp Biochem Physiol B Biochem Molec Biol 132:69–74

    Google Scholar 

  • Koestler A (1971) The case of the midwife toad. Random House, New York

    Google Scholar 

  • König E, Bininda-Emmonds ORP, Shaw C (2015) The diversity and evolution of anuran skin peptides. Peptides 63:96–117

    PubMed  Google Scholar 

  • Kozorog M (2003) Salamander brandy: “a psychedelic drink” between media myth and practice of home alcohol distillation in Slovenia. Anthropol East Eur Rev 21:63–71

    Google Scholar 

  • Kueneman J, Woodhams D, Van Treuren W, Archer W, Knight R, McKenzie V (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:934–944

    PubMed  Google Scholar 

  • Linné C (1774). Vollständiges Natursystem. Deutsche Übersetzung durch P. C. S. Müller; 3. Theil: von den Amphibien. Nürnberg

  • Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anti-Cancer Drugs 19:931–939

    CAS  PubMed  Google Scholar 

  • Luiselli L, Anibaldi C, Capula M (1995) The diet of juvenile adders, Vipera berus, in an alpine habitat. Amphibia-Reptilia 16:404–407

    Google Scholar 

  • Luiselli L, Capula M, Shine R (1997) Food habits, growth rates, and reproductive biology of grass snakes, Natrix natrix (Colubridae) in the Italian alps. J Zool 241:371–380

    Google Scholar 

  • Malkmus R (2005a) Lautäußerungen bei Salamandra salamandra gallaica. Z Feldherpetol 12:131–132

    Google Scholar 

  • Malkmus R (2005b) Abwehrverhalten bei Salamandra salamandra gallaica und Salamandra salamandra crespoi. Z Feldherpetol 12:133–136

    Google Scholar 

  • Manenti R, Denoël M, Ficetola GF (2013) Foraging plasticity favours adaption to new habitats in fire salamanders. Anim Behav 86:375–382

    Google Scholar 

  • Manenti R, Pennati R, Ficetola GF (2015) Role of density and resource competition in determining aggressive behaviour in salamanders. J Zool 296:270–277

    Google Scholar 

  • Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomykosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMenamin SK, Bain EJ, McCann AE, Patterson LB, Eom DS, Waller ZP, Hamill JV, Kuhlman JA, Eisen JS, Parichy DM (2014) Thyroid hormone-dependent adult pigment cell lineage and pattern in zebrafish. Science 345:1358–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mebs D (2010) Gifttiere. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretions of the European fire salamander (Salamandra salamandra terrestris). Toxicon 45:603–606

    CAS  PubMed  Google Scholar 

  • Merabet K, Sanchez E, Dahmana A, Bogaerts S, Donaire D, Steinfartz S, Joger U, Vences M, Karar M, Moali A (2016) Phylogeographic relationships and shallow mitochondrial divergence of Algerian populations of Salamandra algira. Amphibia-Reptilia 37:1–8

    Google Scholar 

  • Michl E, Kaiser E (1963) Chemie und Biochemie der Amphibiengifte. Toxicon 1:175–228

    CAS  Google Scholar 

  • Muzinic J, Rasajski J (1992) On food and feeding habits of the white stork, Ciconia ciconia ciconia, on the Central Balkans. Ökol Vögel 14:211–223

    Google Scholar 

  • Nascetti G, Andreone F, Capula M, Bullini L (1988) A new Salamandra species from southwestern alps (Amphibia, Urodela, Salamandridae). Boll Mus Reg Sci Nat Torino 6:617–638

    Google Scholar 

  • Natchev N, Handschuh S, Lukanov S, Tzankov N, Naumov B, Werneburg I (2016) Contributions of the functional morphology of caudate skulls: kinetic and akinetic forms. PeerJ 4:e2392. https://doi.org/10.7717/peerj.2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Netolitzky F (1904) Untersuchungen über den giftigen Bestandteil des Alpensalamanders, Salamandra atra Laur. Arch Exp Pathol Pharmakol 51:118–129

    CAS  Google Scholar 

  • Obika M, Bagnara JT (1964) Pteridines as pigments in amphibians. Science 143:485–487

    CAS  PubMed  Google Scholar 

  • Oka K, Hara S (1969) The synthesis of samane (desoxysamanine) and 17β-hydroxysamane. Tetrahedron Lett 10:1189–1191

    Google Scholar 

  • Oka K, Hara S (1977) Denial of the proposed structure of salamander alkaloid, cycloneosamandaridine. Total synthesis of cycloneosamandione and supposed cycloneosamandaridine. J Am Chem Soc 99:3859–3860

    CAS  PubMed  Google Scholar 

  • Oka K, Ike Y, Hara S (1969a) The skeletal synthesis of early proposed cycloneosamandione | the synthesis of 19-homosteroids. Tetrahedron Lett 10:4543–4546

    Google Scholar 

  • Oka K, Ike Y, Hara S (1969b) The skeletal synthesis of early proposed cycloneosamandione || the synthesis of 19-retro-17β, 9-dihydroxy-3-aza-a-homo-5β-androstane. Tetrahedron Lett 10:4547–4550

    Google Scholar 

  • Otto F (1885) Wunderglaube und Wirklichkeit. In Rücksicht auf seltsame Erscheinungen der Tierwelt sowie unerklärliche Vorgänge im Menschenleben. Fabelhafte Gestalten des Wahns in Volksglauben, Sage und Dichtung. Verlag Otto Spemer, Leipzig

    Google Scholar 

  • Panagides N, Jackson TN, Ikonomopoulou MP, Arbuckle K, Pretzler R, Yang DC, Ali SA, Koludarov I, Dobson J, Sanker B, Asselin A, Santana RC, Hendrikx I, van der Ploeg H, Tai-A-Pin J, van den Bergh R, Kerkkamp HM, Vonk FJ, Naude A, Strydom MA, Jacobsz L, Dunstan N, Jaeger M, Hodgson WC, Miles J, Fry BG (2017) How the cobra got its flesh-eating venom: cytotoxicity as a defensive innovation and its co-evolution with hooding, aposematic marking, and spitting. Toxins (Basel) 9. https://doi.org/10.3390/toxins9030103

    PubMed Central  Google Scholar 

  • Park ST, Collingwood AM, St-Hilaire S, Sheridan PP (2014) Inhibition of Batrachochytrium dendrobatidis caused by bacteria isolated from the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, from Grand Teton National Park, Wyoming, USA. Microbiol Insights 7:1–8

    PubMed  PubMed Central  Google Scholar 

  • Paulitsch P (1984) Tod eines Jagdhundes durch Feuersalamander. Wild Hund 87:35

    Google Scholar 

  • Pezaro N, Rovelli V, Segev O, Templeton AR, Blaustein L (2017) Suspected rat predation oft he Near Eastern fire salamander (Salamandra infraimmaculata) by selective consumption of non toxic tissue. Zool Middle East 64:91–93

    Google Scholar 

  • Phisalix-Picot M (1900) Researches embryologiques, histologiques et physilogiques sur les glandes a venin de la Salamandre terrestre. Paris Mus Hist Nat Bull 6:294–300

    Google Scholar 

  • Preißler K, Pröhl H (2017) The effects of background coloration and dark spots on the risk of predation in poison frog models. Evol Ecol 31:683–694

    Google Scholar 

  • Preusser HJ, Habermehl G, Sablofski M, Schmall-Haury D (1975) Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon 13:285–288

    CAS  PubMed  Google Scholar 

  • Raaymakers C, Verbrugghe E, Hernot S, Hellebuyck T, Betti C, Peleman C, Claeys M, Bert W, Cavaliers V, Ballet S, Martel A, Pasmans F, Roelants K (2017) Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nature. Communications 8:1495. https://doi.org/10.1038/s41467-017-01710-1

    Article  CAS  Google Scholar 

  • Raaymakers C, Verbrugghe E, Stijlemans B, Martel A, Pasmans F, Roelants K (2018) The anuran skin peptide bradykinin mediates its own absorption across epithelial barriers of the digestive tract. Peptides 103:84–89

    CAS  PubMed  Google Scholar 

  • Reinhardt T, Steinfartz S, Paetzold A, Weitere M (2013) Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173:281–291

    PubMed  Google Scholar 

  • Riberon A, Miaud C, Grossenbacher K, Taberlet P (2001) Phylogeography of the alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence. Mol Ecol 10:2555–2560

    CAS  PubMed  Google Scholar 

  • Rivera X, Donaire-Barroso D, Arribas O (2014) Hipótesis sobre el origen y función del patrón de coloración y de las estrategias reproductivas en el género Salamandra Laurenti, 1768. Butll Soc Catalana Herpetol 21:75–92

    Google Scholar 

  • Rodriguez A, Poth D, Schulz S, Vences M (2011) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418

    CAS  PubMed  Google Scholar 

  • Rodríguez A, Burgon JD, Lyra M, Irisarri I, Baurain D, Blaustein L, Göçmen B, Künzel S, Mable BK, Nolte AW, Veith M, Steinfartz S, Elmer KR, Philippe H, Vences M (2017) Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol 115:16–26

    PubMed  Google Scholar 

  • Rodriguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA, Gutiérrez M (2017) Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol 198:235–254

    CAS  PubMed  Google Scholar 

  • Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta Biomembr 1788:1593–1599

    CAS  Google Scholar 

  • Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC (2005) Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol 45:137–142

    CAS  PubMed  Google Scholar 

  • Roseghini M, Erspamer F, Severini C, Simmaco M (1989) Biogenic amines and active peptides in extracts of thirty-two European amphibian species. Comp Biochem Physiol 94:455–460

    CAS  Google Scholar 

  • Ruxton GD, Sherrat TN, Speed MP (2004) Avoiding attack. Oxford University Press, Oxford

    Google Scholar 

  • Sabino-Pinto J, Bletz M, Hendrix R, Perl RGB, Martel A, Pasmans F, Lötters S, Mutschmann F, Schmeller DS, Schmidt BR, Veith M, Wagner N, Vences M, Steinfartz S (2015) First detection of the emerging fungal pathogen Batrachochytrium salamandrivorans in Germany. Amphibia-Reptilia 36:411–416

    Google Scholar 

  • Sanchez E, Bletz MC, Duntsch L, Bhuju S, Geffers R, Jarek M, Dohrmann AB, Tebbe CC, Steinfartz S, Vences M (2017) Cutaneous bacterial communities of a poisonous salamander: a perspective from life stages, body parts and environmental conditions. Microb Ecol 73(2):455–465

    CAS  PubMed  Google Scholar 

  • Sanchez E, Küpfer E, Goedbloed DJ, Nolte AW, Lüddecke T, Schulz S, Vences M, Steinfartz S (2018a) Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, Salamandra salamandra. J Exp Zool B Mol Dev Evol 330(2):96–108.

    CAS  PubMed  Google Scholar 

  • Sanchez E, Gippner S, Vences M, Preißler K, Hermanski IJ, Caspers BA, Krause ET, Steinfartz S, Kastrup FW (2018b) Automatic quantification of colour proportions in dorsal black-and-yellow coloured amphibians, tested on the fire salamander (Salamandra salamandra). Herpetol Notes 11:73–76

    Google Scholar 

  • Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2002) Oribatid mites: a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890

    Google Scholar 

  • Sauer H, Weisbecker H (1994) Einheimische Schlangen als gelegentliche Verfolger des Feuersalamanders (Salamandra salamandra) – zwei Feldbeobachtungen. Nat Mus 124:349–350

    Google Scholar 

  • Schindler H, Frank (1961) Tiere in Pharmazie und Medizin. Hippokrates, Stuttgart

    Google Scholar 

  • Schmidt BR, Feldmann R, Schaub M (2005) Demographic processes underlying growth and decline in Salamandra salamandra. Conserv Biol 19:1149–1156

    Google Scholar 

  • Schöpf C (1942) Die Konstitution des Samandarins. Liebigs Ann Chem 552:62–105

    Google Scholar 

  • Schöpf C (1961) Die Konstitution der Salamander-Alkaloide. Experientia 17:285–328

    Google Scholar 

  • Schöpf H (1992) Fabeltiere. VMA, Wiesbaden

    Google Scholar 

  • Schöpf C, Braun W (1934) Über Samandarin, das Hauptalkaloid im Gift des Feuer- und Alpensalamanders. Liebigs Ann Chem 514:69–136

    Google Scholar 

  • Schöpf C, Koch K (1942) Über Samandaron und Samandaridin, Nebenalkaloide im Gift des Feuer- und Alpensalamanders. Liebigs Ann Chem 552:37–61

    Google Scholar 

  • Schöpf C, Möller OW (1960) Cycloneosamandion, ein neues Nebenalkaloid aus dem Feuersalamander (Salamandra maculosa Laur). Liebigs Ann Chem 633:127–156

    Google Scholar 

  • Schöpf C, Blödorn HK, Klein D, Seitz G (1950) Zur Konstitution des Samandarins. Chem Ber 83:372–390

    Google Scholar 

  • Schöpf C, Klein D, Hofmann E (1954) Die Darstellung von Dehydrierungs-Kohlenwasserstoffen aus Samandiol. Chem Ber 87:1638–1660

    Google Scholar 

  • Seidel U, Gerhardt P (2016) Die Gattung Salamandra. Edition Chimaira, Frankfurt am Main

    Google Scholar 

  • Servedio MR (2000) The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration. Evolution 54:751–763

    CAS  PubMed  Google Scholar 

  • Shimizu Y (1976) Synthesis of samandarine-type alkaloids and analogues. J Org Chem 41:1930–1934

    CAS  Google Scholar 

  • Skelhorn J, Halpin CG, Rowe C (2016) Learning about aposematic prey. Behav Ecol 27(4):955–964

    Google Scholar 

  • Sousa LQ, Machado KD, Oliveira SF, Araújo LD, Monção-Filho ED, Melo-Cavalcante AA, Vieira-Júnior GM, Ferreira PM (2017) Bufadienolides from amphibians: a promising source of anticancer prototypes for radical innovation, apoptosis triggering and Na+/K+-ATPase inhibition. Toxicon 127:63–75

    PubMed  Google Scholar 

  • Spitzen-van der Sluijs A, Martel A, Asselberghs J, Bales EK, Beukema W, Bletz MC, Dalbeck L, Goverse E, Kerres A, Kinet T, Kirst K, Laudelout A, Marin da Fonte LF, Nöllert A, Ohlhoff D, Sabino-Pinto J, Schmidt BR, Speybroeck J, Spikmans F, Steinfartz S, Veith M, Vences M, Wagner N, Pasmans F, Lötters S (2016) Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerg Infect Dis 22:1286–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinfartz S (2004) Salamandra- Feuer- und Alpensalamander. In: Böhme W (ed) Handbuch der Reptilien und Amphibien Europas (4:IIB). AULA, Wiebelsheim

    Google Scholar 

  • Steinfartz S, Veith M, Tautz D (2000) Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Mol Ecol 9:397–410

    CAS  PubMed  Google Scholar 

  • Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation—ecological and genetic differentiation of a salamander population in a small forest. Mol Ecol 16:4550–4561

    CAS  PubMed  Google Scholar 

  • Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, Schaub M, Canessa S, Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuyt F, Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544(7650):353–356

    CAS  PubMed  Google Scholar 

  • Stokes AN, Williams BL, French SS (2012) An improved competetive inhibition enzymatic immunoassay method for tetrodotoxin quantification. Biol Proced Online 14:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Summers K, Clough ME (2001) The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Natl Acad Sci U S A 98:6227–6232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Summers K, Speed MP, Blount JD, Stuckert AMM (2015) Are aposematic signals honest? Evol Biol 28:1583–1599

    CAS  Google Scholar 

  • Thiesmeier B (2004) Der Feuersalamander. Laurenti, Bielefeld

    Google Scholar 

  • Trevisan P (1982) A new subspecies of alpine salamanders. Boll Zool 49:235–239

    Google Scholar 

  • Tsuruda K, Arakawa O, Kawatsu O, Hamano Y, Takatani T, Noguchi T (2002) Secretory glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster. Toxicon 40:131–136

    CAS  PubMed  Google Scholar 

  • van Alphen JJM, Arntzen JW (2016) Paul Kammerer and the inheritance of acquired characteristics. Contrib Zool 85:457–470

    Google Scholar 

  • Van Bellegem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F, Jiggins CD, McMillan WO, Counterman BA (2017) Patternize: an R package for quantifying colour pattern variation. Methods Ecol Evol 9:390–398

    Google Scholar 

  • Van Bocxlaer I, Maex M, Treer D, Janssenswillen S, Janssens R, Vandebergh W, Proost P, Bossuyt F (2016) Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae). Sci Rep 6:21880

    PubMed  PubMed Central  Google Scholar 

  • Velo-Anton G, Cordero-Rivera A (2011) Predation by invasive mammals on an insular viviparous population of Salamandra salamandra. Herpetol Notes 4:299–301

    Google Scholar 

  • Velo-Anton G, Zamudio KR, Cordero-Rivera A (2012) Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108:410–418

    CAS  PubMed  Google Scholar 

  • Vences M, Sanchez E, Hauswaldt SJ, Eikelmann D, Rodriguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfartz S (2014) Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol Phyl Evol 73:208–216

    CAS  Google Scholar 

  • von Byern J, Mebs D, Heiss E, Dicke U, Wetjen O, Bakkegard K, Grunwald I, Wolbank S, Mühleder S, Gugerell A, Fuchs H, Nuernberger S (2017) Salamanders on the bench—a biocompatibility study of salamander skin secretions in cell cultures. Toxicon 135:24–32

    Google Scholar 

  • Wang IJ, Shaffer HB (2008) Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62:2742–2759

    CAS  PubMed  Google Scholar 

  • Werner C, Himstedt W (1984) Eye accomodation during prey capture behaviour in fire salamanders (Salamandra salamandra L.). Behav Brain Res 12:69–73

    CAS  PubMed  Google Scholar 

  • Winter HG (1991) Färbung und Zeichnung. In: Klewen R (ed) Die Landsalamander Europas, Teil 1. Die Gattungen Salamandra und Mertensiella, 2 Aufl. Ziemsen, Wittenberg Lutherstadt

  • Wölfel E, Schöpf C, Weitz G, Habermehl G (1961) Die Konstitution und Konfiguration des Samandarins. Chem Ber 94:2361–2373

    Google Scholar 

  • Wood FW, Sollers BG, Dragoo GA, Dragoo JW (2002) Volatile components in defensive spray of the hooded skunk, Mephitis macroura. J Chem Ecol 28(9):1865–1870

    CAS  PubMed  Google Scholar 

  • Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V (2014) Interacting symbionts and immunity in the amphibian skin mucosome predicts disease risk and probiotic effectiveness. PLoS One 9:e96375. https://doi.org/10.1371/journal.pone.0096375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2017) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microbial Ecol 75:1049–1062. https://doi.org/10.1007/s00248-017-1095-7

    Article  CAS  Google Scholar 

  • Yotsu M, Iorizzi M, Yasumoto T (1990) Distribution of tetrodotoxin, 6-epitetrodotoxin and 11-deoxytetrodotoxin in newts. Toxicon 28:238–241

    CAS  PubMed  Google Scholar 

  • Yotsu-Yamashita M, Mebs D, Kwet A, Schneider M (2007) Tetrodotoxin and its analogue 6-epitetrodotoxin in newts (Triturus spp.: Urodela, Salamandridae) from southern Germany. Toxicon 50:306–309

    CAS  PubMed  Google Scholar 

  • Yotsu-Yamashita M, Toennes SW, Mebs D (2017) Tetrodotoxin in Asian newts (Salamandridae). Toxicon 134:14–17

    CAS  PubMed  Google Scholar 

  • Zalesky S (1866) Über das Samandarin. Das Gift der Salamandra maculata. Med chem Untersuch Hoppe-Seyler 1:85–116

    Google Scholar 

Download references

Acknowledgements

Robin Schmidt and Janosch Knepper provided the material for the illustration of the figure. We are grateful to Kathleen Preißler for her fruitful discussions and input and to Pedro Galán for the bibliographic information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Lüddecke.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüddecke, T., Schulz, S., Steinfartz, S. et al. A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Sci Nat 105, 56 (2018). https://doi.org/10.1007/s00114-018-1579-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-018-1579-4

Keywords

Navigation