Skip to main content

Advertisement

Log in

Autophagy and nuclear morphometry are associated with histopathologic features in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Less than 15% of patients with esophageal squamous cell carcinoma (ESCC) survive 5 years after diagnosis. A better understanding of the biology of these tumors and the development of clinical biomarkers is needed. Autophagy is a physiological mechanism involved in the turnover of cellular components that plays a key role in cancer. This study evaluated the differential levels of three key regulators of autophagy (SQSTM1, MAP1LC3B, and BECN1) in patients with ESCC, associating autophagy with histopathologic features, including the grade of differentiation, mitotic rate, inflammation score, and the intensity of tumor-infiltrating lymphocytes. Nuclear morphometry of the tumor parenchyma was also assessed, associating it with autophagy and histopathology. All three markers significantly increased in patients with ESCC compared to the control group. Based on the mean expression of each protein in the control group, 57% of patients with ESCC had high levels of all three markers compared to control patients (14%). The most frequent profiles found in ESCC were BECNhigh/MAP1LC3high and BECNhigh/SQSTM1high. According to the TCGA database, we found that the main autophagy genes were upregulated in ESCC. Moreover, high levels of autophagy markers were associated with a poor prognosis. Considering nuclear morphometry, ESCC samples showed a significant reduction in nuclear area, which was strongly negatively correlated with autophagy. Finally, the percentage of normal nuclei was associated with tumor differentiation, while poorly differentiated tumors showed lower SQSTM1 levels. ESCC progression may involve increased autophagy and changes in nuclear structure, associated with clinically relevant histopathological features.

Key messages

  • Autophagy markers are co-increased in primary ESCC.

  • Autophagy negatively correlates with nuclear morphometry in ESCC parenchyma.

  • Autophagy and nuclear morphometry are associated with histopathological features.

  • Autophagy is increased in ESCC-TCGA database and associated with poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Immunohistochemistry generated in this study is not publicly available due to ethical privacy, but can be obtained from the corresponding author upon reasonable request.

Abbreviations

AutoIndex:

Autophagic Index

ATG:

Autophagy genes or proteins

BECN1:

Beclin-1

ESCC:

Esophageal squamous cell carcinoma

EC:

Esophageal carcinoma

MAP1LC3A/B/C (LC3A/B/C):

Microtubule-associated protein 1 light chain 3 (isoforms A, B, and C)

NMA:

Nuclear morphometric analysis

tNMA:

Nuclear morphometric analysis in tissue

NII:

Nuclear irregularity index

N nuclei:

Normal nuclei

OST:

Overall survival time

SQSTM1:

Sequestosome 1

SR nuclei:

Small and regular nuclei

TCGA:

The Cancer Genome Atlas

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  2. Fagundes RB, de Carli D, Xaubet RV, Cantarelli JC (2016) Unchanging pattern of prevalence of esophageal cancer, overall and by histological subtype, in the endoscopy service of the main referral hospital in the central region of Rio Grande do Sul State, in Southern Brazil. Dis Esophagus 29:603–606

    Article  CAS  PubMed  Google Scholar 

  3. Uhlenhopp DJ, Then EO, Sunkara T, Gaduputi V (2020) Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol 13:1010–1021

    Article  PubMed  Google Scholar 

  4. Murphy G, McCormack V, Abedi-Ardekani B et al (2017) International cancer seminars: a focus on esophageal squamous cell carcinoma. Ann Oncol 28:2086–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galluzzi L, Pietrocola F, Bravo-San Pedro JM et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  7. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14:207–215

    Article  CAS  PubMed  Google Scholar 

  8. Li X, He S, Ma B (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849

    Article  CAS  PubMed  Google Scholar 

  10. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He H, Dang Y, Dai F et al (2003) Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278:29278–29287

    Article  CAS  PubMed  Google Scholar 

  12. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  14. Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137

    Article  CAS  PubMed  Google Scholar 

  16. Ryter SW, Cloonan SM, Choi AM (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vessoni AT, Filippi-Chiela EC, Menck CFM, Lenz G (2013) Autophagy and genomic integrity. Cell Death Differ 20:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poillet-Perez L, Sharp DW, Yang Y et al (2020) Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat Cancer 1:923–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bustos SO, Antunes F, Rangel MC, Chammas R (2020) Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression - implications for cancer therapy. Front Oncol 10:606436

    Article  PubMed  PubMed Central  Google Scholar 

  22. Janji B, Berchem G, Chouaib S (2018) Targeting autophagy in the tumor microenvironment: new challenges and opportunities for regulating tumor immunity. Front Immunol 9:887

    Article  PubMed  PubMed Central  Google Scholar 

  23. Das CK, Mandal M, Kögel D (2018) Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev 37:749–766

    Article  CAS  PubMed  Google Scholar 

  24. O’Donovan TR, O’Sullivan GC, McKenna SL (2011) Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7:509–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao D, Shan D, Yan W et al (2021) Chaperone-mediated autophagy affects tumor cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. Thorac Cancer 12:1048–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulcahy Levy JM, Thorburn A (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 27:843–857

    Article  PubMed  Google Scholar 

  28. Saxena R, Klochkova A, Murray MG et al (2019) Roles for autophagy in esophageal carcinogenesis: implications for improving patient outcomes. Cancers (Basel) 11

  29. Ruifrok AC, Katz RL, Johnston DA (2003) Comparison of quantification of histochemical staining by hue-saturation-intensity (HSI) transformation and color-deconvolution. App Imm Mol Morph 11:85–91

    CAS  Google Scholar 

  30. Stephen HC, Emma T, Timothy K et al (2012) Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. App Imm Mol Morph 20:82–90

    Google Scholar 

  31. Nunes TWN, Filippi-Chiela EC, Callegari-Jacques SM et al (2019) Nuclear morphometric analysis in tissue as an objective tool with potential use to improve melanoma staging. Melanoma Res

  32. Nagtegaal ID, Odze RD, Klimstra D et al (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76:182–188

    Article  PubMed  Google Scholar 

  33. Chandrashekar DS, Bashel B, Balasubramanya SAH et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Győrffy B (2021) Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 19:4101–4109

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–D947

    Article  CAS  PubMed  Google Scholar 

  36. Baek SH, Kim KI (2017) Epigenetic control of autophagy: nuclear events gain more attention. Mol Cell 65:781–785

    Article  CAS  PubMed  Google Scholar 

  37. Sui X, Zhu J, Zhou J et al (2015) Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Lett 360:106–113

    Article  CAS  PubMed  Google Scholar 

  38. Bhol CS, Panigrahi DP, Praharaj PP et al (2020) Epigenetic modifications of autophagy in cancer and cancer therapeutics. Semin Cancer Biol 66:22–33

    Article  CAS  PubMed  Google Scholar 

  39. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

  40. Easwaran HP, Baylin SB (2010) Role of nuclear architecture in epigenetic alterations in cancer. Cold Spring Harb Symp Quant Biol 75:507–515

    Article  CAS  PubMed  Google Scholar 

  41. Fischer EG (2020) Nuclear morphology and the biology of cancer cells. Acta Cytol 64:511–519

    Article  CAS  PubMed  Google Scholar 

  42. Uhler C, Shivashankar GV (2018) Nuclear mechanopathology and cancer diagnosis. Trends Cancer 4:320–331

    Article  CAS  PubMed  Google Scholar 

  43. Wolberg WH, Street WN, Mangasarian OL (1999) Importance of nuclear morphology in breast cancer prognosis. Clin Cancer Res 5:3542–3548

    CAS  PubMed  Google Scholar 

  44. Buhmeida A, Ristamäki R, Lamlum H et al (2005) Nuclear area is a prognostic determinant in advanced colorectal cancer. Anticancer Res 25:3083–3088

    PubMed  Google Scholar 

  45. He Y, Zhao X, Subahan NR et al. The prognostic value of autophagy-related markers beclin-1 and microtubule-associated protein light chain 3B in cancers: a systematic review and meta-analysis. Tumour Biol 35:7317–26

  46. Li J, Yan Q, Liu N et al (2020) The prognostic value of autophagy-related markers Bclin-1 and LC-3 in colorectal cancers: a systematic review and meta-analysis. Evid Based Complement Alternat Med 23:8475840

    Google Scholar 

  47. Zheng T, Li D, He Z et al (2018) Prognostic and clinicopathological significance of Beclin-1 in non-small-cell lung cancer: a meta-analysis. Onco Targets Ther 11:4167–4175

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ahn CH, Jeong EG, Lee JW et al (2007) Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 115:1344–1349

    Article  PubMed  Google Scholar 

  49. Cai M, Hu Z, Liu J et al (2014) Beclin 1 expression in ovarian tissues and its effects on ovarian cancer prognosis. Int J Mol Sci 15:5292–5303

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li X, Xu H, Ma H (2013) Beclin 1 is highly expressed in papillary thyroid carcinoma and correlates with lymph node metastasis. Acta Chir Belg 113:175–181

    Article  CAS  PubMed  Google Scholar 

  51. Liu JL, Chen FF, Chang SF et al (2015) Expression of Beclin family proteins is associated with tumor progression in oral cancer. PLoS ONE 10:e0141308

    Article  PubMed  PubMed Central  Google Scholar 

  52. Al-Shenawy HA (2016) Expression of Beclin-1, an autophagy-related marker, in chronic hepatitis and hepatocellular carcinoma and its relation with apoptotic markers. APMIS 124:229–237

    Article  CAS  PubMed  Google Scholar 

  53. Weh KM, Howell AB, Kresty LA (2016) Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma. Mol Carcinog 55:1876–1885

    Article  CAS  PubMed  Google Scholar 

  54. Shen MX, Ding JB (2017) Expression levels and roles of EMC-6, Beclin1, and Rab5a in the cervical cancer. Eur Rev Med Pharmacol Sci 21:3038–3046

    PubMed  Google Scholar 

  55. Du H, Luo F, Shi M et al (2021) Beclin-1 is a promising prognostic biomarker in a specific esophageal squamous cell carcinoma population. Pathol Oncol Res 27:594724

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roesly HB, Khan MR, Chen HD et al (2012) The decreased expression of Beclin-1 correlates with progression to esophageal adenocarcinoma: the role of deoxycholic acid. Am J Physiol Gastrointest Liver Physiol 302:G864–G872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Chloropoulou P, Liberis V, Sivridis E (2011) High Beclin 1 expression defines a poor prognosis in endometrial adenocarcinomas. Gynecol Oncol 123:147–151

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Pan XL, Ding LJ, Liu DY, Da-Peng Lei Jin T (2013) Aberrant expression of Beclin-1 and LC3 correlates with poor prognosis of human hypopharyngeal squamous cell carcinoma. PLoS One 8:e69038

  59. Ju LL, Zhao CY, Ye KF, Yang H, Zhang J (2016) Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues. Eur Rev Med Pharmacol Sci 20:1993–2003

    PubMed  Google Scholar 

  60. Valente G, Morani F, Nicotra G et al (2014) Expression and clinical significance of the autophagy proteins BECLIN 1 and LC3 in ovarian cancer. Biomed Res Int 2014:462658

    Article  PubMed  PubMed Central  Google Scholar 

  61. Minamoto T, Nakayama K, Nakamura K et al (2018) Loss of beclin 1 expression in ovarian cancer: a potential biomarker for predicting unfavorable outcomes. Oncol Lett 15:1170–1176

    PubMed  Google Scholar 

  62. Liu JL, Chen FF, Lung J et al (2014) Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma. Br J Cancer 111:944–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakurai T, Okumura H, Matsumoto M et al (2013) The expression of LC-3 is related to tumor suppression through angiogenesis in esophageal cancer. Med Oncol 30:701

    Article  PubMed  PubMed Central  Google Scholar 

  64. Winardi D, Tsai HP, Chai CY et al (2014) Correlation of altered expression of the autophagy marker LC3B with poor prognosis in astrocytoma. Biomed Res Int 2014:723176

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee YJ, Hah YJ, Ha YJ et al (2013) The autophagy-related marker LC3 can predict prognosis in human hepatocellular carcinoma. PLoS ONE 8:e81540

    Article  PubMed  PubMed Central  Google Scholar 

  66. Inui T, Chano T, Takikita-Suzuki M, Nishikawa M, Yamamoto G, Okabe H (2013) Association of p62/SQSTM1 excess and oral carcinogenesis. PLoS ONE 8:e74398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuo WL, Sharifi MN, Lingen MW et al (2014) p62/SQSTM1 accumulation in squamous cell carcinoma of head and neck predicts sensitivity to phosphatidylinositol 3-kinase pathway inhibitors. PLoS ONE 9:e90171

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schläfli AM, Adams O, Galván JA et al (2016) Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer. Oncotarget 7:39544–39555

    Article  PubMed  PubMed Central  Google Scholar 

  69. Qian HL, Peng XX, Chen SH, Ye HM, Qiu JH (2005) p62 Expression in primary carcinomas of the digestive system. World J Gastroenterol 11:1788–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shi C, Pan BQ, Shi F et al (2018) Sequestosome 1 protects esophageal squamous carcinoma cells from apoptosis via stabilizing SKP2 under serum starvation condition. Oncogene 37:3260–3274

    Article  CAS  PubMed  Google Scholar 

  71. Cui H, Weng Y, Ding N et al (2021) Autophagy-related three-gene prognostic signature for predicting survival in esophageal squamous cell carcinoma. Front Oncol 11:650891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duan L, Cao L, Zhang R et al (2021) Development and validation of a survival model for esophageal adenocarcinoma based on autophagy-associated genes. Bioengineered 12:3434–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang C, Shen S, Zheng X et al (2020) Long non-coding RNA LINC00337 induces autophagy and chemoresistance to cisplatin in esophageal squamous cell carcinoma cells via upregulation of TPX2 by recruiting E2F4. FASEB J 34:6055–6069

    Article  CAS  PubMed  Google Scholar 

  74. Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56:711–721

    Article  PubMed  PubMed Central  Google Scholar 

  75. Veltri RW, Christudass CS (2014) Nuclear morphometry, epigenetic changes, and clinical relevance in prostate cancer. Adv Exp Med Biol 773:77–99

    Article  CAS  PubMed  Google Scholar 

  76. Miyamoto H, Isobe H, Akita H et al (1992) The flow cytometric nuclear-DNA content, tumor-origin, nuclear size and prognosis in squamous-cell lung-cancer. Int J Oncol 1:325–329

    CAS  PubMed  Google Scholar 

  77. Buhmeida A, Algars A, Ristamäki R, Collan Y, Syrjänen K, Pyrhönen S (2006) Nuclear size as prognostic determinant in stage II and stage III colorectal adenocarcinoma. Anticancer Res 26:455–462

    PubMed  Google Scholar 

  78. Nakazato Y, Minami Y, Kobayashi H et al (2010) Nuclear grading of primary pulmonary adenocarcinomas: correlation between nuclear size and prognosis. Cancer 116:2011–2019

    Article  PubMed  Google Scholar 

  79. Shin HR, Kim H, Kim KI, Baek SH (2016) Epigenetic and transcriptional regulation of autophagy. Autophagy 12:2248–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Research and Event Incentive Fund (FIPE) of the Hospital de Clínicas of Porto Alegre (HCPA) for funding this study and the statistical analysis service of the Hospital de Clínicas de Porto Alegre for helping with the project.

Funding

This study was funded by the Research and Event Incentive Fund (FIPE) of the Hospital de Clínicas of Porto Alegre (HCPA), project no. 16–0233.

Author information

Authors and Affiliations

Authors

Contributions

RI, EFSP, and ECFC contributed to the study conception and design. RI, PF, PLDCL, and SMCJ performed material preparation and data collection and analysis. FH and FV performed histopathological analysis. RI and ECFC wrote the first draft of the manuscript, and all authors commented on previous versions of the article. ADBL reviewed and tabulated patients’ medical records in the Hospital de Clínicas de Porto Alegre system and also reviewed the manuscript. All authors read and approved the final version.

Corresponding author

Correspondence to Eduardo Cremonese Filippi-Chiela.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study, from sample recruitment and use, as well as access to clinical information were approved by the Ethical Committee of the Hospital de Clinicas de Porto Alegre under the Certificate of Presentation for Ethical Appreciation (CAAE): 57102216.0.0000.5327. The risk of breach of confidentiality was controlled by signing the term of responsibility for the use of biological material, in which the researchers undertake not to use references that identify the study patients.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iserhard, R., Pilar, E.F.S., de Oliveira, F.H. et al. Autophagy and nuclear morphometry are associated with histopathologic features in esophageal squamous cell carcinoma. J Mol Med 102, 39–52 (2024). https://doi.org/10.1007/s00109-023-02387-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02387-4

Keywords

Navigation