Skip to main content
Log in

The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

This is not applicable.

Abbreviations

APC:

Antigen-presenting cell

ATRA:

all-trans retinoic acid

BMDC:

Bone marrow‐derived cell

BMDM:

Bone marrow‐derived macrophage

Cag:

Cytotoxin-related gene

CCRL:

C-C motif chemokine receptor-like

cDC:

Conventional DC

COX:

Cyclooxygenase

CTL:

Cytotoxic T lymphocyte

CXCL:

Chemokine (CXC motif) ligand

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

NKG2D:

Natural killer group2 member

NKG2DL:

Natural killer group2 member ligand

GC:

Gastric cancer

GM-CSF::

Granulocyte macrophage–colony-stimulating factor

HKHP:

Thermal killing of Helicobacter pylori

HMGB:

High-mobility group box

Hop:

Toxicity-associated adhesin

HP-NAP:

Helicobacter pylori Neutrophil-activating protein

H. pylori:

Helicobacter pylori

IFN:

Interferon

IL:

Interleukin

IRF:

IFN regulatory factor

JAK:

Janus kinase

LPS:

Lipopolysaccharide

MAP:

Mitogen-activated protein

miRNA:

MicroRNA

MNC:

Monocyte

MyD88:

Myeloid differentiation factor-88

Mø:

Macrophage

NEUT:

Neutrophil

NF‐κB:

Nuclear factor‐κB;

NK cell:

Natural killer cell

NLR:

Nod-like receptors

PAMP:

Pathogen-associated molecular pattern

PAR:

Protease-activated receptor

pDC:

Plasmacytoid dendritic cell

PD-L1:

Programmed death ligand-1

PGE2:

Prostaglandin E2

ROS:

Reactive oxygen species

PRR:

Pattern recognition receptor

SLFN4:

The myeloid differentiation factor Schlafen4

STAT:

Signal transducer and transcription factor

TAK:

TNF-α receptor-associated factor-related kinase

TAM:

Tumour-associated macrophage

TCGA:

The Cancer Genome Atlas

Th:

T helper cell

TIL:

Tumour infiltrating lymphocyte

Tim-3:

 T cell immunoglobulin and mucin-domain-containing molecule-3

TIR:

Toll/IL-1 receptor

TLR:

Toll-like receptor

TME:

The tumour microenvironment

TNF‐α:

Tumour necrosis factor‐α

TRAF:

TNF-α receptor-associated factor

Tr-1:

Tregulatory-1

T4ss:

Type IV secretion system

References

  1. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1(8390):1311–1315

    CAS  PubMed  Google Scholar 

  2. Yang L, Kartsonaki C, Yao P et al (2021) The relative and attributable risks of cardia and non-cardia gastric cancer associated with Helicobacter pylori infection in China: a case-cohort study. Lancet Public Health 6(12):e888–e896

    PubMed  PubMed Central  Google Scholar 

  3. Waldum H, Fossmark R (2021) Gastritis, gastric polyps and gastric cancer. Int J Mol Sci 22(12)

  4. Kuo S, Cheng A (2013) Helicobacter pylori and mucosa-associated lymphoid tissue: what’s new. Hematology 2013(1):109–117

    PubMed  Google Scholar 

  5. Vogelmann R, Amieva MR (2007) The role of bacterial pathogens in cancer. Curr Opin Microbiol 10(1):76–81

    CAS  PubMed  Google Scholar 

  6. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  7. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  8. Wang F, Meng W, Wang B et al (2014) Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 345(2):196–202

    CAS  PubMed  Google Scholar 

  9. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    CAS  PubMed  Google Scholar 

  10. Salama NR, Hartung ML, Müller A (2013) Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11(6):385–399

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sasaran MO, Melit LE, Dobru ED (2021) MicroRNA modulation of host immune response and inflammation triggered by Helicobacter pylori. Int J Mol Sci 22(3)

  12. Schmausser B, Andrulis M, Endrich S et al (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295(3):179–185

    CAS  PubMed  Google Scholar 

  13. Wang TR, Peng JC, Qiao YQ et al (2014) Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. Int J Clin Exp Pathol 7(10):6950–6955

    PubMed  PubMed Central  Google Scholar 

  14. Uno K, Kato K, Shimosegawa T (2014) Novel role of toll-like receptors in Helicobacter pylori - induced gastric malignancy. World J Gastroenterol 20(18):5244–5251

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muzio M, Ni J, Feng P et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343):1612–1615

    CAS  PubMed  Google Scholar 

  16. Du Q, Zhu C, Shang Q et al (2018) A study on the correlation of MyD88 expression with gastric cancer. Int J Clin Exp Pathol 11(10):4836–4844

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lozano-Pope I, Sharma A, Matthias M et al (2017) Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer 17(1):133

    PubMed  PubMed Central  Google Scholar 

  18. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    CAS  PubMed  Google Scholar 

  19. Pitt JM, Marabelle A, Eggermont A et al (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 27(8):1482–1492

    CAS  PubMed  Google Scholar 

  20. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baj J, Brzozowska K, Forma A et al (2020) Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis. Int J Mol Sci 21(7)

  22. Baj J, Korona-Glowniak I, Forma A et al (2020) Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer. Cells 9(4)

  23. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  24. Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907

    CAS  PubMed  Google Scholar 

  25. Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5(7):1095–1097

    CAS  PubMed  Google Scholar 

  26. Shen Y, Kawamura I, Nomura T et al (2010) Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect Immun 78(6):2857–2867

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kennedy CL, Najdovska M, Tye H et al (2014) Differential role of MyD88 and Mal/TIRAP in TLR2-mediated gastric tumourigenesis. Oncogene 33(19):2540–2546

    CAS  PubMed  Google Scholar 

  28. Banerjee A, Thamphiwatana S, Carmona EM et al (2014) Deficiency of the myeloid differentiation primary response molecule MyD88 leads to an early and rapid development of Helicobacter-induced gastric malignancy. Infect Immun 82(1):356–363

    PubMed  PubMed Central  Google Scholar 

  29. Tye H, Kennedy CL, Najdovska M et al (2012) STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22(4):466–478

    CAS  PubMed  Google Scholar 

  30. Salcedo R, Worschech A, Cardone M et al (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207(8):1625–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202

  32. Chen J, Xia D, Xu M et al (2020) Expression and significance of MyD88 in patients with gastric cardia cancer in a high-incidence area of China. Front Oncol 10:559

    PubMed  PubMed Central  Google Scholar 

  33. Maeda Y, Echizen K, Oshima H et al (2016) Myeloid differentiation factor 88 signaling in bone marrow-derived cells promotes gastric tumorigenesis by generation of inflammatory microenvironment. Cancer Prev Res (Phila) 9(3):253–263

    CAS  PubMed  Google Scholar 

  34. Salcedo R, Cataisson C, Hasan U et al (2013) MyD88 and its divergent toll in carcinogenesis. Trends Immunol 34(8):379–389

    CAS  PubMed  Google Scholar 

  35. Rad R, Brenner L, Krug A et al (2007) Toll-like receptor-dependent activation of antigen-presenting cells affects adaptive immunity to Helicobacter pylori. Gastroenterology 133(1):150–163

    CAS  PubMed  Google Scholar 

  36. Obonyo M, Rickman B, Guiney DG (2011) Effects of myeloid differentiation primary response gene 88 (MyD88) activation on Helicobacter infection in vivo and induction of a Th17 response. Helicobacter 16(5):398–404

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Obonyo M, Sabet M, Cole SP et al (2007) Deficiencies of myeloid differentiation factor 88, Toll-like receptor 2 (TLR2), or TLR4 produce specific defects in macrophage cytokine secretion induced by Helicobacter pylori. Infect Immun 75(5):2408–2414.09

  38. Ishii KJ, Koyama S, Nakagawa A et al (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3(6):352–363

    CAS  PubMed  Google Scholar 

  39. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27(4):549–559

    CAS  PubMed  Google Scholar 

  40. Hayashi T, Senda M, Morohashi H et al (2012) Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12(1):20–33

    CAS  PubMed  Google Scholar 

  41. Kaplan-Turkoz B, Jimenez-Soto LF, Dian C et al (2012) Structural insights into Helicobacter pylori oncoprotein CagA interaction with beta1 integrin. Proc Natl Acad Sci U S A 109(36):14640–14645

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grohmann E, Christie PJ, Waksman G et al (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107(4):455–471

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tegtmeyer N, Neddermann M, Asche CI et al (2017) Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol 105(3):358–372

    CAS  PubMed  Google Scholar 

  44. Rad R, Ballhorn W, Voland P et al (2009) Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 136(7):2247–2257

    CAS  PubMed  Google Scholar 

  45. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816–825

    CAS  PubMed  Google Scholar 

  46. Lourenco CM, Susi MD, Do NM et al (2020) Characterization and strong risk association of TLR2 del -196 to -174 polymorphism and Helicobacter pylori and their influence on mRNA expression in gastric cancer. World J Gastrointest Oncol 12(5):535–548

    PubMed  PubMed Central  Google Scholar 

  47. Polk DB, Peek RJ (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10(6):403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Echizen K, Hirose O, Maeda Y et al (2016) Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci 107(4):391–397

    CAS  PubMed  PubMed Central  Google Scholar 

  49. West XZ, Malinin NL, Merkulova AA et al (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gambardella V, Castillo J, Tarazona N et al (2020) The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev 86:102015

    CAS  PubMed  Google Scholar 

  51. Evans DJ, Evans DG, Takemura T et al (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63(6):2213–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Satin B, Del GG, Della BV et al (2000) The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med 191(9):1467–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Amedei A, Cappon A, Codolo G et al (2006) The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 116(4):1092–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wen S H, Hong Z W, Chen C C et al (2021) Helicobacter pylori neutrophil-activating protein directly interacts with and activates Toll-like Receptor 2 to induce the secretion of interleukin-8 from neutrophils and ATRA-induced differentiated HL-60 cells. Int J Mol Sci 22(21)

  55. Neuper T, Frauenlob T, Sarajlic M et al (2020) TLR2, TLR4 and TLR10 shape the cytokine and chemokine release of H. pylori-infected huma7n DCs. Int J Mol Sci 21(11)

  56. Sayi A, Kohler E, Toller IM et al (2011) TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol 186(2):878–890

    CAS  PubMed  Google Scholar 

  57. Pellicano A, Sebkova L, Monteleone G et al (2007) Interleukin-12 drives the Th1 signaling pathway in Helicobacter pylori-infected human gastric mucosa. Infect Immun 75(4):1738–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindgren A, Pavlovic V, Flach CF et al (2011) Interferon-gamma secretion is induced in IL-12 stimulated human NK cells by recognition of Helicobacter pylori or TLR2 ligands. Innate Immun 17(2):191–203

    CAS  PubMed  Google Scholar 

  59. Backhed F, Rokbi B, Torstensson E et al (2003) Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J Infect Dis 187(5):829–836

    PubMed  Google Scholar 

  60. Yokota S, Ohnishi T, Muroi M et al (2007) Highly-purified Helicobacter pylori LPS preparations induce weak inflammatory reactions and utilize Toll-like receptor 2 complex but not Toll-like receptor 4 complex. FEMS Immunol Med Microbiol 51(1):140–148

    CAS  PubMed  Google Scholar 

  61. Pachathundikandi SK, Tegtmeyer N, Backert S (2023) Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori[J]. Trends Microbiol

  62. Smith MJ, Mitchell A, Li G et al (2003) Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J Biol Chem 278(35):32552–32560

    CAS  PubMed  Google Scholar 

  63. Yokota S, Okabayashi T, Rehli M et al (2010) Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect Immun 78(1):468–476

    CAS  PubMed  Google Scholar 

  64. Chochi K, Ichikura T, Kinoshita M et al (2008) Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clin Cancer Res 14(10):2909–2917

    CAS  PubMed  Google Scholar 

  65. Gong Y, Tao L, Jing L et al (2016) Association of TLR4 and Treg in Helicobacter pylori colonization and inflammation in mice. PLoS ONE 11(2):e149629

    Google Scholar 

  66. Yin W, Li Y, Song Y et al (2021) CCRL2 promotes antitumor T cell immunity via amplifying TLR4-mediated immunostimulatory macrophage activation. Proc Natl Acad Sci USA 118(16)

  67. Lanier LL (2015) NKG2D receptor and its ligands in host defense. Cancer Immunol Res 3(6):575–582

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hernandez C, Toledo-Stuardo K, Garcia-Gonzalez P et al (2021) Heat-killed Helicobacter pylori upregulates NKG2D ligands expression on gastric adenocarcinoma cells via Toll-like receptor 4. Helicobacter 26(4):e12812

    CAS  PubMed  Google Scholar 

  69. Michalkiewicz J, Helmin-Basa A, Grzywa R et al (2015) Innate immunity components and cytokines in gastric mucosa in children with Helicobacter pylori infection. Mediators Inflamm 2015:176726

    PubMed  PubMed Central  Google Scholar 

  70. Fukata M, Abreu MT (2008) Role of Toll-like receptors in gastrointestinal malignancies. Oncogene 27(2):234–243

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dooyema S, Krishna US, Loh JT et al (2021) Helicobacter pylori-induced TLR9 activation and injury are associated with the virulence-associated adhesin HopQ. J Infect Dis 224(2):360–365

    CAS  PubMed  Google Scholar 

  72. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    CAS  PubMed  Google Scholar 

  73. Kawai T, Sato S, Ishii KJ et al (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10):1061–1068

    CAS  PubMed  Google Scholar 

  74. Otani K, Tanigawa T, Watanabe T et al (2012) Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochem Biophys Res Commun 426(3):342–349

    CAS  PubMed  Google Scholar 

  75. Ding L, Hayes MM, Photenhauer A et al (2016) Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest 126(8):2867–2880

    PubMed  PubMed Central  Google Scholar 

  76. Xiang X, Wu Y, Li H et al (2021) Plasmacytoid dendritic cell-derived type i interferon is involved in Helicobacter pylori infection-induced differentiation of Schlafen 4-expressing myeloid-derived suppressor cells. Infect Immun 89(11):e40721

    Google Scholar 

  77. Andersen-Nissen E, Smith KD, Strobe KL et al (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102(26):9247–9252

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tegtmeyer N, Neddermann M, Lind J et al (2020) Toll-like receptor 5 activation by the CagY repeat domains of Helicobacter pylori. Cell Rep 32(11):108159

    CAS  PubMed  Google Scholar 

  79. Pachathundikandi SK, Tegtmeyer N, Arnold IC et al (2019) T4SS-dependent TLR5 activation by Helicobacter pylori infection. Nat Commun 10(1):5717

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nagashima H, Iwatani S, Cruz M et al (2015) Toll-like receptor 10 in Helicobacter pylori infection. J Infect Dis 212(10):1666–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ravishankar RM, Goh KL, Leow AH et al (2015) Polymorphisms at Locus 4p14 of Toll-like receptors TLR-1 and TLR-10 confer susceptibility to gastric carcinoma in Helicobacter pylori infection. PLoS ONE 10(11):e141865

    Google Scholar 

  82. Pachathundikandi SK, Backert S (2016) Differential expression of interleukin 1beta during Helicobacter pylori infection of Toll-like receptor 2 (TLR2)- and TLR10-expressing HEK293 cell lines. J Infect Dis 214(1):166–167

    CAS  PubMed  Google Scholar 

  83. Zhang Z, Li Z, Li Y et al (2014) MicroRNA and signaling pathways in gastric cancer. Cancer Gene Ther 21(8):305–316

    PubMed  Google Scholar 

  84. O’Connell RM, Rao DS, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    CAS  PubMed  Google Scholar 

  85. Olivieri F, Rippo MR, Prattichizzo F et al (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10(1):11

    PubMed  PubMed Central  Google Scholar 

  86. Teng GG, Wang WH, Dai Y et al (2013) Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS ONE 8(2):e56709

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang B, Xiao B, Liu Z et al (2010) Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 584(8):1481–1486

    CAS  PubMed  Google Scholar 

  88. Wang J, Deng Z, Wang Z et al (2016) MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res 8(9):3700–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koch M, Mollenkopf HJ, Klemm U et al (2012) Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 109(19):E1153–E1162

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4(2):97–105

    CAS  PubMed  Google Scholar 

  91. Yu H, Lee H, Herrmann A et al (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746

    CAS  PubMed  Google Scholar 

  92. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Piao JY, Lee HG, Kim SJ et al (2016) Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: potential roles for reactive oxygen species. Helicobacter 21(5):405–416

    CAS  PubMed  Google Scholar 

  94. Monney L, Sabatos CA, Gaglia JL et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541

    CAS  PubMed  Google Scholar 

  95. Anderson AC, Anderson DE, Bregoli L et al (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318(5853):1141–1143

    CAS  PubMed  Google Scholar 

  96. Zhang Y, Ma CJ, Wang JM et al (2012) Tim-3 regulates pro- and anti-inflammatory cytokine expression in human CD14+ monocytes. J Leukoc Biol 91(2):189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang F, Mao Z, Liu D et al (2017) Overexpression of Tim-3 reduces Helicobacter pylori-associated inflammation through TLR4/NFkappaB signaling in vitro. Mol Med Rep 15(5):3252–3258

    CAS  PubMed  Google Scholar 

  98. Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13(10):2836–2848

    CAS  PubMed  Google Scholar 

  99. Torosyan Y, Dobi A, Glasman M et al (2010) Role of multi-hnRNP nuclear complex in regulation of tumor suppressor ANXA7 in prostate cancer cells. Oncogene 29(17):2457–2466

    CAS  PubMed  Google Scholar 

  100. Yue Y, Zhou T, Gao Y et al (2017) High mobility group box 1/Toll-like receptor 4/myeloid differentiation factor 88 signaling promotes progression of gastric cancer. Tumour Biol 39(3):1393395352

    Google Scholar 

  101. Takaoka A, Yanai H, Kondo S et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434(7030):243–249

    CAS  PubMed  Google Scholar 

  102. Chionh YT, Ng GZ, Ong L et al (2015) Protease-activated receptor 1 suppresses Helicobacter pylori gastritis via the inhibition of macrophage cytokine secretion and interferon regulatory factor 5. Mucosal Immunol 8(1):68–79

    CAS  PubMed  Google Scholar 

  103. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    CAS  PubMed  Google Scholar 

  104. Xia Y, Shen S, Verma IM (2014) NF-kappaB, an active player in human cancers. Cancer Immunol Res 2(9):823–830

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Peng C, Ouyang Y, Lu N et al (2020) The NF-kappaB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol 11:1387

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith SM (2014) Role of Toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol 5(3):133–146

    PubMed  PubMed Central  Google Scholar 

  107. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168(1–2):37–57

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang X, Wang J, Deng X et al (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):10

    PubMed  PubMed Central  Google Scholar 

  109. Liu J, Hamrouni A, Wolowiec D et al (2007) Plasma cells from multiple myeloma patients express B7–H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110(1):296–304

    CAS  PubMed  Google Scholar 

  110. Yee D, Shah KM, Coles MC et al (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292(50):20683–20693

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Youth Program of National Natural Science Foundation of China (No. 81500169), the Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology (2016TP1015) and the Key Project of Hunan Provincial Health Commission (20201921).

Author information

Authors and Affiliations

Authors

Contributions

Meiqi Liu is responsible for writing the article. Zhizhong Hu is responsible for figure modification and article format adjustment. Yang Zhang and Chengkun Wang are responsible for the direction and core of the article. All authors have read and approved the publication of this article.

Corresponding authors

Correspondence to Chengkun Wang or Yang Zhang.

Ethics declarations

Ethics approval and consent to participates

This is not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Hu, Z., Wang, C. et al. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med 101, 767–781 (2023). https://doi.org/10.1007/s00109-023-02332-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02332-5

Keywords

Navigation