Skip to main content

Advertisement

Log in

The regulatory role of LncRNA HCG18 in various cancers

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

As a member of long non-coding RNAs (lncRNAs), LncRNA HLA complex group 18 (HCG18) has recently become the focus of cancer research. As outlined in this review, LncRNA HCG18 has been reported to be dysregulated in various cancers development and appears to be activated in a variety of tumors, including clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), gastric cancer (GC), hepatocellular carcinoma (HCC), laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), lung adenocarcinoma (LUAD), nasopharyngeal cancer (NPC), osteosarcoma (OS), and prostate cancer (PCa). Furthermore, the expression of lncRNA HCG18 decreased in bladder cancer (BC) and papillary thyroid cancer (PTC). Overall, the presence of these differential expressions suggests the clinical value of HCG18 in cancer therapy. Additionally, lncRNA HCG18 influences various biological processes of cancer cells. This review summarizes the molecular mechanisms of HCG18 in cancer development, highlights reported the abnormal expression of HCG18 found in various cancer types, and aims to discuss the potential of HCG18 as a target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BC:

Bladder cancer

ccRCC:

Clear cell renal cell carcinoma

ceRNA:

Competing endogenous RNA

CRC:

Colorectal cancer

CENPM:

Centromere protein M

CET:

Cetuximab

CCND1:

Cell cycle protein D1

EBV:

Epstein–Barr virus

EMT:

Epithelial-to-mesenchymal transition

Exos:

Exosomes

GSEA:

Gene collection and enrichment analysis

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

HCG18:

HLA complex group 18

KNTC1:

Kinetochore associated 1

LHSCC:

Laryngeal and hypopharyngeal squamous cell carcinoma

lncRNA:

Long non-coding RNA

LUAD:

Lung adenocarcinoma

MTDH:

Metadherin

NPC:

Nasopharyngeal cancer

OS:

Osteosarcoma

PCa:

Prostate cancer

PTC:

Papillary thyroid cancer

RIP assay:

RNA immunoprecipitation assay

TAZ:

Tafazzin

WIPF1:

Wiskott–Aldrich syndrome protein-interacting protein family member 1

YAP:

Yes-associated protein 1

References

  1. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46

    Article  CAS  PubMed  Google Scholar 

  2. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41):5661–5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang Y, Gong P, Yao D, Xue D, He X (2021) LncRNA HCG18 promotes clear cell renal cell carcinoma progression by targeting miR-152-3p to upregulate RAB14. Cancer Manag Res 13:2287–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW, Wu CP (2021) LncRNA HCG18 suppresses CD8(+) T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics 13(16):1281–1297

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Wu T, Zhang D, Sun X, Zhang X (2020) The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol 47(4):703–712

    Article  CAS  PubMed  Google Scholar 

  6. Niu W, Guo LY, Zhang JY, Ji T, Mao D, Li XF, Du XX (2020) E2F1-induced upregulation of lncRNA HCG18 stimulates proliferation and migration in gastric cancer by binding to miR-197-3p. Eur Rev Med Pharmacol Sci 24(19):9949–9956

    CAS  PubMed  Google Scholar 

  7. Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C (2022) Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol 74(2):250–258

    Article  PubMed  Google Scholar 

  8. Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, Zou W, Pan Y (2020) Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med 9(18):6752–6765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xin L, Wu Y, Liu C, Zeng F, Wang JL, Wu DZ, Wu JP, Yue ZQ, Gan JH, Lu H, Yuan YW, Zhou LQ (2021) Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer. Mol Immunol 140:196–205

    Article  CAS  PubMed  Google Scholar 

  10. Ma F, An K, Li Y (2020) Silencing of long non-coding RNA-HCG18 inhibits the tumorigenesis of gastric cancer through blocking PI3K/Akt pathway. Onco Targets Ther 13:2225–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma P, Li L, Liu F, Zhao Q (2020) HNF1A-induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther 13:7641–7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou Y, Sun Z, Sun S (2020) LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem 168(5):535–546

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Wang Z, Li M, Sun P, Bai T, Wang W, Bai H, Gou J, Wang Z (2021) HCG18 participates in vascular invasion of hepatocellular carcinoma by regulating macrophages and tumor stem cells. Front Cell Dev Biol 9:707073

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peng H, Ge P (2022) Long noncoding RNA HCG18 facilitates the progression of laryngeal and hypopharyngeal squamous cell carcinoma by upregulating FGFR1 via miR133b. Mol Med Rep 25:(2)

  15. Li W, Pan T, Jiang W, Zhao H (2020) HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Biomed Pharmacother 129:110217

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Ma TT, Ma YH, Jiang YF (2019) LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140/CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci 23(23):10387–10399

    CAS  PubMed  Google Scholar 

  17. Zheng Z, Lin K (2021) LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. Am J Transl Res 13(7):7783–7793

    PubMed  PubMed Central  Google Scholar 

  18. Zhao Z, Chen J, Xia D (2021) Knockdown of HCG18 inhibits cell viability, migration and invasion in pediatric osteosarcoma by targeting miR-188-5p/FOXC1 axis. Mol Biotechnol 63(9):807–817

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, Xie P, Yang B (2021) Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat 20:1533033821990064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan X, Chen G, Hu W (2021) lncRNA HLA Complex Group 18 (HCG18) facilitated cell proliferation, invasion, and migration of prostate cancer through modulating miR-370-3p/DDX3X Axis. Reprod Sci 28(12):3406–3416

    Article  CAS  PubMed  Google Scholar 

  21. Xu Z, Huang B, Zhang Q, He X, Wei H, Zhang D (2019) NOTCH1 regulates the proliferation and migration of bladder cancer cells by cooperating with long non-coding RNA HCG18 and microRNA-34c-5p. J Cell Biochem 120(4):6596–6604

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Zhao J, Tan L, Lin S, Long M, Peng X (2021) LncRNA-HCG18 regulates the viability, apoptosis, migration, invasion and epithelial-mesenchymal transition of papillary thyroid cancer cells via regulating the miR-106a-5p/PPP2R2A axis. Pathol Res Pract 221:153395

    Article  CAS  PubMed  Google Scholar 

  23. Martinez Rodriguez RH, Buisan Rueda O, Ibarz L (2017) Bladder cancer: present and future. Med Clin (Barc) 149(10):449–455

    Article  PubMed  Google Scholar 

  24. Wolf MM, Kimryn Rathmell W, Beckermann KE (2020) Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 39(17):3413–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muglia VF, Prando A (2015) Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 48(3):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiao S, Peters U, Berndt S, Brenner H, Butterbach K, Caan BJ, Carlson CS, Chan AT, Chang-Claude J, Chanock S, Curtis KR, Duggan D, Gong J, Harrison TA, Hayes RB, Henderson BE, Hoffmeister M, Kolonel LN, Le Marchand L, Potter JD, Rudolph A, Schoen RE, Seminara D, Slattery ML, White E, Hsu L (2014) Estimating the heritability of colorectal cancer. Hum Mol Genet 23(14):3898–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X (2017) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8(3):3980–4000

    Article  PubMed  Google Scholar 

  28. Woolston A, Khan K, Spain G, Barber LJ, Griffiths B, Gonzalez-Exposito R, Hornsteiner L, Punta M, Patil Y, Newey A, Mansukhani S, Davies MN, Furness A, Sclafani F, Peckitt C, Jiménez M, Kouvelakis K, Ranftl R, Begum R, Rana I, Thomas J, Bryant A, Quezada S, Wotherspoon A, Khan N, Fotiadis N, Marafioti T, Powles T, Lise S, Calvo F, Guettler S, von Loga K, Rao S, Watkins D, Starling N, Chau I, Sadanandam A, Cunningham D, Gerlinger M (2019) Genomic and transcriptomic determinants of therapy resistance and immune landscape evolution during anti-EGFR treatment in colorectal cancer. Cancer Cell 36(1):35-50.e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yao H, Sun Q, Zhu J (2019) miR-1271 enhances the sensitivity of colorectal cancer cells to cisplatin. Exp Ther Med 17(6):4363–4370

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun X, Zhai H, Chen X, Kong R, Zhang X (2018) MicroRNA-1271 suppresses the proliferation and invasion of colorectal cancer cells by regulating metadherin/Wnt signaling. J Biochem Mol Toxicol 32:(2)

  31. Song H, Li C, Li R, Geng J (2010) Prognostic significance of AEG-1 expression in colorectal carcinoma. Int J Colorectal Dis 25(10):1201–1209

    Article  PubMed  Google Scholar 

  32. Maconi G, Manes G, Porro GB (2008) Role of symptoms in diagnosis and outcome of gastric cancer. World J Gastroenterol 14(8):1149–1155

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Li SY, Zhang LB (2018) LncRNA RGMB-AS1 is activated by E2F1 and promotes cell proliferation and invasion in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci 22(7):1979–1986

    CAS  PubMed  Google Scholar 

  34. Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, Zhou L, Liu R, Wang X, Bai M, Ge S, Li H, Huang D, Ying G, Ba Y (2017) miR-370 regulates cell proliferation and migration by targeting EGFR in gastric cancer. Oncol Rep 38(1):384–392

    Article  CAS  PubMed  Google Scholar 

  35. Gargini R, Escoll M, García E, García-Escudero R, Wandosell F, Antón IM (2016) WIP drives tumor progression through YAP/TAZ-dependent autonomous cell growth. Cell Rep 17(8):1962–1977

    Article  CAS  PubMed  Google Scholar 

  36. Wang F, Li B, Wei Y, Zhao Y, Wang L, Zhang P, Yang J, He W, Chen H, Jiao Z, Li Y (2018) Tumor-derived exosomes induce PD1(+) macrophage population in human gastric cancer that promotes disease progression. Oncogenesis 7(5):41

  37. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, Chen J, Liao JY, Cui X, Zeng Y, Yao H, Su F, Liu Q, Jiang S, Song E (2015) miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun 6:8523

    Article  CAS  PubMed  Google Scholar 

  38. Zong W, Ju S, Jing R, Cui M (2018) Long non-coding RNA-mediated regulation of signaling pathways in gastric cancer. Clin Chem Lab Med 56(11):1828–1837

    Article  CAS  PubMed  Google Scholar 

  39. Kulik L, El-Serag HB (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156(2):477-491.e471

    Article  PubMed  Google Scholar 

  40. Venook AP, Papandreou C, Furuse J, de Guevara LL (2010) The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15(Suppl 4):5–13

    Article  PubMed  Google Scholar 

  41. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M (2019) The basics of epithelial-mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol

  42. Hou P, Li L, Chen F, Chen Y, Liu H, Li J, Bai J, Zheng J (2018) PTBP3-Mediated regulation of ZEB1 mRNA stability promotes epithelial-mesenchymal transition in breast cancer. Cancer Res 78(2):387–398

    Article  CAS  PubMed  Google Scholar 

  43. Kim JU, Cox IJ, Taylor-Robinson SD (2017) The quest for relevant hepatocellular carcinoma biomarkers. Cell Mol Gastroenterol Hepatol 4(2):283–284

    Article  PubMed  PubMed Central  Google Scholar 

  44. Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, Sun J, Mao X, Wei L (2020) Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer 147(10):2879–2890

    Article  CAS  PubMed  Google Scholar 

  45. Bumbat M, Wang M, Liang W, Ye P, Sun W, Liu B (2020) Effects of Me(2)SO and trehalose on the cell viability, proliferation, and Bcl-2 family gene (BCL-2, BAX, and BAD) expression in cryopreserved human breast cancer cells. Biopreserv Biobank 18(1):33–40

    Article  CAS  PubMed  Google Scholar 

  46. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, Chen W (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J

  47. Lee PN, Forey BA, Coombs KJ, Lipowicz PJ, Appleton S (2016) Time trends in never smokers in the relative frequency of the different histological types of lung cancer, in particular adenocarcinoma. Regul Toxicol Pharmacol 74:12–22

    Article  PubMed  Google Scholar 

  48. You B, Shan Y, Bao L, Chen J, Yang L, Zhang Q, Zhang W, Zhang Z, Zhang J, Shi S, You Y (2018) The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review). Int J Oncol 52(1):38–46

    CAS  PubMed  Google Scholar 

  49. Choi JH, Ro JY (2021) The 2020 WHO classification of tumors of bone: an updated review. Adv Anat Pathol 28(3):119–138

    Article  CAS  PubMed  Google Scholar 

  50. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 21 Suppl 7, vii320–325

  51. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH (2019) Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 16(3):450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scher HI, Solo K, Valant J, Todd MB, Mehra M (2015) Prevalence of prostate cancer clinical states and mortality in the United States: estimates using a dynamic progression model. PLoS One 10(10): e0139440

  53. Liu D, Kuai Y, Zhu R, Zhou C, Tao Y, Han W, Chen Q (2020) Prognosis of prostate cancer and bone metastasis pattern of patients: a SEER-based study and a local hospital based study from China. Sci Rep 10(1):9104

  54. Liu J, Li M, Wang Y, Luo J (2017) Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target 25(7):645–652

    Article  CAS  PubMed  Google Scholar 

  55. Liu CT, Min L, Wang YJ, Li P, Wu YD, Zhang ST (2019) shRNA-mediated knockdown of KNTC1 suppresses cell viability and induces apoptosis in esophageal squamous cell carcinoma. Int J Oncol 54(3):1053–1060

    CAS  PubMed  Google Scholar 

  56. Yu C, Cao H, He X, Sun P, Feng Y, Chen L, Gong H (2017) Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother 96:1109–1118

    Article  CAS  PubMed  Google Scholar 

  57. Fan J, Du W, Zhang H, Wang Y, Li K, Meng Y, Wang J (2020) Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 594(3):466–476

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the grants from National Natural Science Foundation of China (Grant No. 81974528 to C. F. Yuan, No. 82174035 to C. F. Yuan, and No. 81773959 to C. F. Yuan), the innovational group project of Hubei Province Natural Science Foundation in China (Grant No. 2021CFA015 to C. F. Yuan), and central government guides the special funds for the development of local science and technology (Grant No. 2020ZYYD016 to C. F. Yuan).

Author information

Authors and Affiliations

Authors

Contributions

Z. D. and B. W. drafted the manuscript. F. T. and Y. W. conceived the content and structure. J. C., F. Z., and M. L. collected relevant papers. G. Z. and C. Y. revised and finalized the review. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gang Zhou or Chengfu Yuan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Wang, B., Tan, F. et al. The regulatory role of LncRNA HCG18 in various cancers. J Mol Med 101, 351–360 (2023). https://doi.org/10.1007/s00109-023-02297-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02297-5

Keywords

Navigation