Skip to main content
Log in

Novel read through agent: ZKN-0013 demonstrates efficacy in APCmin model of familial adenomatous polyposis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Familial adenomatous polyposis (FAP) is a precancerous, colorectal disease characterized by hundreds to thousands of adenomatous polyps caused by mutations in the tumor suppressor gene adenomatous polyposis coli (APC). Approximately 30% of these mutations are premature termination codons (PTC), resulting in the production of a truncated, dysfunctional APC protein. Consequently, the β-catenin degradation complex fails to form in the cytoplasm, leading to elevated nuclear levels of β-catenin and unregulated β-catenin/wnt-pathway signaling. We present in vitro and in vivo data demonstrating that the novel macrolide, ZKN-0013, promotes read through of premature stop codons, leading to functional restoration of full-length APC protein. Human colorectal carcinoma SW403 and SW1417 cells harboring PTC mutations in the APC gene showed reduced levels of nuclear β-catenin and c-myc upon treatment with ZKN-0013, indicating that the macrolide-mediated read through of premature stop codons produced bioactive APC protein and inhibited the β-catenin/wnt-pathway. In a mouse model of adenomatous polyposis coli, treatment of APCmin mice with ZKN-0013 caused a significant decrease in intestinal polyps, adenomas, and associated anemia, resulting in increased survival. Immunohistochemistry revealed decreased nuclear β-catenin staining in the epithelial cells of the polyps in ZKN-0013-treated APCmin mice, confirming the impact on the β-catenin/wnt-pathway. These results indicate that ZKN-0013 may have therapeutic potential for the treatment of FAP caused by nonsense mutations in the APC gene.

Key messages

• ZKN-0013 inhibited the growth of human colon carcinoma cells with APC nonsense mutations.

• ZKN-0013 promoted read through of premature stop codons in the APC gene.

• In APCmin mice, ZKN-0013 treatment reduced intestinal polyps and their progression to adenomas.

• ZKN-0013 treatment in APCmin mice resulted in reduced anemia and increased survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in this study for analysis and presented in the results are available upon reasonable request.

References

  1. Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10(7):721–733

    Article  CAS  PubMed  Google Scholar 

  3. De Queiroz Rossanese LB, De Lima Marson FA, Ribeiro JD, Coy CS, Bertuzzo CS (2013) APC germline mutations in families with familial adenomatous polyposis. Oncol Rep 30(5):2081–2088

    Article  PubMed  Google Scholar 

  4. Leoz ML, Carballal S, Moreira L, Ocana T, Balaguer F (2015) The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet 8:95–107

    PubMed  PubMed Central  Google Scholar 

  5. Polakis P (1995) Mutations in the APC gene and their implications for protein structure and function. Curr Opin Genet Dev 5(1):66–71

    Article  CAS  PubMed  Google Scholar 

  6. Ripa R, Bisgaard ML, Bulow S, Nielsen FC (2002) De novo mutations in familial adenomatous polyposis (FAP). Eur J Hum Genet 10(10):631–637

    Article  CAS  PubMed  Google Scholar 

  7. Galiatsatos P, Foulkes WD (2006) Familial adenomatous polyposis. Am J Gastroenterol 101(2):385–398

    Article  PubMed  Google Scholar 

  8. Senda T, Shimomura A, Iizuka-Kogo A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80(3):121–131

    Article  CAS  PubMed  Google Scholar 

  9. Hankey W, Frankel WL, Groden J (2018) Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev 37(1):159–172

  10. Khalilzadeha S, Pakdaman SF, Momeni-Moghaddam M (2016) The role of APC in Wnt/ β-catenin pathway in gastric cancer. The Cancer Press 2(3)

  11. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  12. Beroud C, Soussi T (1996) APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 24(1):121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25(57):7531–7537

    Article  CAS  PubMed  Google Scholar 

  14. Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66(3):131–144

    Article  CAS  PubMed  Google Scholar 

  15. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bian J, Dannappel M, Wan C, Firestein R (2020) Transcriptional regulation of Wnt/beta-catenin pathway in colorectal cancer. Cells 9(9)

  17. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IP (2000) APC mutations in sporadic colorectal tumors: a mutational “hotspot” and interdependence of the “two hits.” Proc Natl Acad Sci USA 97(7):3352–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  CAS  PubMed  Google Scholar 

  19. Washington K, Zemper AE (2019) Apc-related models of intestinal neoplasia: a brief review for pathologists. Surg Exp Pathol 2(1)

  20. Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR, Dove WF (1995) ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 31A(7–8):1061–1064

    Article  CAS  PubMed  Google Scholar 

  21. Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R (1999) Mouse models for colorectal cancer. Oncogene 18(38):5325–5333

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Cao H, Zhang B, Cao H, Xu X, Ruan H, Yi T, Tan L, Qu R, Song G, Wang B, Hu T (2013) Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. J Cell Mol Med 17(11):1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zilberberg A, Lahav L, Rosin-Arbesfeld R (2010) Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 59(4):496–507

    Article  CAS  PubMed  Google Scholar 

  24. Caspi M, Firsow A, Rajkumar R, Skalka N, Moshkovitz I, Munitz A, Pasmanik-Chor M, Greif H, Megido D, Kariv R, Rosenberg DW, Rosin-Arbesfeld R (2016) A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med (Berl) 94(4):469–482

    Article  CAS  PubMed  Google Scholar 

  25. Kariv R, Caspi M, Fliss-Isakov N, Shorer Y, Shor Y, Rosner G, Brazowski E, Beer G, Cohen S, Rosin-Arbesfeld R (2020) Resorting the function of the colorectal cancer gatekeeper adenomatous polyposis coli. Int J Cancer 146(4):1064–1074

    Article  CAS  PubMed  Google Scholar 

  26. Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10(4):691–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92(12):5431–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brinker AD, Wassel RT, Lyndly J, Serrano J, Avigan M, Lee WM, Seeff LB (2009) Telithromycin-associated hepatotoxicity: clinical spectrum and causality assessment of 42 cases. Hepatology 49(1):250–257

    Article  PubMed  Google Scholar 

  29. Guo D, Cai Y, Chai D, Liang B, Bai N, Wang R (2010) The cardiotoxicity of macrolides: a systematic review. Pharmazie 65(9):631–640

    CAS  PubMed  Google Scholar 

  30. Li X, Wang M, Liu G, Zhou L, Wang Z, Li C (2016) Macrolides use and the risk of sudden cardiac death. Expert Rev Anti Infect Ther 14(6):535–537

    Article  CAS  PubMed  Google Scholar 

  31. Chlipala E, Bendzinski CM, Chu K, Johnson JI, Brous M, Copeland K, Bolon B (2020) Optical density-based image analysis method for the evaluation of hematoxylin and eosin staining precision. J Histotechnol 43(1):29–37

    Article  PubMed  Google Scholar 

  32. Horai Y, Akatsuka A, Mizukawa M, NiIshina H, Nishikawa S, Ono Y, Takemoto K, Mochida H (2020) Current status and prospects for quantitative analysis of digital image of pathological specimen using image processing software including artificial intelligence. Translational and Regulatory Sciences 2(3):72–79

    Article  Google Scholar 

  33. Lee HL, Dougherty JP (2012) Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 136(2):227–266

    Article  CAS  PubMed  Google Scholar 

  34. Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5(1):a007898

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davies ML, Roberts GT, Stuart N, Wakeman JA (2007) Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein. Br J Cancer 97(3):384–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fredericks E, Dealtry G, Roux S (2018) Beta-catenin regulation in sporadic colorectal carcinogenesis: not as simple as APC. Can J Gastroenterol Hepatol 2018:4379673

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lecarpentier Y, Schussler O, Hebert JL, Vallee A (2019) Multiple targets of the canonical WNT/beta-catenin signaling in cancers. Front Oncol 9:1248

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kirst HA, Sides GD (1989) New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother 33(9):1419–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kettunen HL, Kettunen AS, Rautonen NE (2003) Intestinal immune responses in wild-type and Apcmin/+ mouse, a model for colon cancer. Cancer Res 63(16):5136–5142

    CAS  PubMed  Google Scholar 

  40. Bidou L, Bugaud O, Belakhov V, Baasov T, Namy O (2017) Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol 14(3):378–388

    Article  PubMed  PubMed Central  Google Scholar 

  41. Floquet C, Rousset JP, Bidou L (2011) Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells. PLoS ONE 6(8):e24125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huels DJ, Ridgway RA, Radulescu S, Leushacke M, Campbell AD, Biswas S, Leedham S, Serra S, Chetty R, Moreaux G, Parry L, Matthews J, Song F, Hedley A, Kalna G, Ceteci F, Reed KR, Meniel VS, Maguire A, Doyle B, Soderberg O, Barker N, Watson A, Larue L, Clarke AR, Sansom OJ (2015) E-cadherin can limit the transforming properties of activating beta-catenin mutations. EMBO J 34(18):2321–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G (2011) E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011:567305

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sothiselvam S, Neuner S, Rigger L, Klepacki D, Micura R, Vazquez-Laslop N, Mankin AS (2016) Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep 16(7):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vazquez-Laslop N, Mankin AS (2018) How macrolide antibiotics work. Trends Biochem Sci 43(9):668–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hajimirzaei N, Khalili NP, Boroumand B, Safari F, Pourhosseini A, Judi-Chelan R, Tavakoli F (2020) Comparative study of the effect of macrolide antibiotics erythromycin, clarithromycin, and azithromycin on the ERG1 gene expression in H9c2 cardiomyoblast cells. Drug Res (Stuttg) 70(8):341–347

    Article  CAS  PubMed  Google Scholar 

  47. Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW Jr, Lightfoot-Dunn R, Hamadeh HK (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118(2):485–500

    Article  CAS  PubMed  Google Scholar 

  48. Woodhead JL, Yang K, Oldach D, MacLauchlin C, Fernandes P, Watkins PB, Siler SQ, Howell BA (2019) Analyzing the mechanisms behind macrolide antibiotic-induced liver injury using quantitative systems toxicology modeling. Pharm Res 36(3):48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no external funds, grants, or other support were received during the preparation of this manuscript. All studies were funded by Eloxx Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s design and experimental procedures. S.S. and R.C. designed and synthesized ZKN-0013; S.A. and S.P. conducted the cell proliferation and western blot experiments and analysis; E.T. provided oversight of the in vitro studies; M.C., V.M., and V.B. critically reviewed the manuscript; V.B. designed and managed the APCmin studies; V.B., V.M., and M.G. analyzed in vivo data and histopathology; M.G. wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Vasudeo Badarinarayana.

Ethics declarations

Ethics approvals

Pharmacokinetic studies were performed at WuXi AppTec Laboratory Testing Division (Cranbury, NJ), which is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and compliant with the Office of Laboratory Animal Welfare (OLAW) Assurance to Conduct Public Health Service (PHS)-funded studies. Efficacy studies were conducted at the Crown Biosciences, Loughborough, UK, in compliance with the UK Animals Scientific Procedures Act 1986 (ASPA) and in line with Directive 2010/63/EU of the European Parliament and the Council of September 22, 2010, on the protection of animals used for scientific purposes.

Competing interests

All authors are employees and shareholders of Eloxx Pharmaceuticals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 796 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, M.R., Apte, S., Terzo, E. et al. Novel read through agent: ZKN-0013 demonstrates efficacy in APCmin model of familial adenomatous polyposis. J Mol Med 101, 375–385 (2023). https://doi.org/10.1007/s00109-023-02291-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02291-x

Keywords

Navigation