Skip to main content

Advertisement

Log in

FoxO3 and oxidative stress: a multifaceted role in cellular adaptation

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1177/0148607111434963

    Article  CAS  PubMed  Google Scholar 

  2. Schieber M, Chandel NS (2014) ROS function in redox signaling. Curr Biol 24:453–462. https://doi.org/10.1016/j.cub.2014.03.034.ROS

    Article  Google Scholar 

  3. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322. https://doi.org/10.1104/pp.106.077073.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  5. Harman D (1956) Aging: a theory on free radical radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  6. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495. https://doi.org/10.1016/j.cell.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  7. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schirrmacher V (2021) Less can be more: the hormesis theory of stress adaptation in the global biosphere and its implications. Biomedicines 9

  9. Calabrese EJ (2018) Hormesis: path and progression to significance Int J Mol Sci 19. https://doi.org/10.3390/ijms19102871

  10. Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–778. https://doi.org/10.1172/jci200318174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  12. Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. https://doi.org/10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  13. Jones DP, Sies H (2015) The Redox Code. Antioxidants Redox. Signal 23:734–746. https://doi.org/10.1089/ars.2015.6247

    Article  CAS  Google Scholar 

  14. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: The Golden Mean of healthy living. Redox Biol 8:205–215. https://doi.org/10.1016/j.redox.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I et al (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72. https://doi.org/10.1016/j.redox.2015.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288. https://doi.org/10.1038/onc.2008.21

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann OJ, Sowden JC, Carlsson P et al (2003) Fox’s in development and disease. Trends Genet 19:339–344. https://doi.org/10.1016/S0168-9525(03)00111-2

    Article  CAS  PubMed  Google Scholar 

  18. Brent MM, Anand R, Marmorstein R (2008) Structural Basis for DNA Recognition by FoxO1 and its Regulation by Post-Translational Modification. Structure 16:1407–1416. https://doi.org/10.1016/j.str.2008.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosaka T, Biggs WH, Tieu D et al (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 101:2975–2980. https://doi.org/10.1073/pnas.0400093101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kodani N, Nakae J (2020) Tissue-specific metabolic regulation of FOXO-binding protein: FOXO Does Not Act Alone. Cells 9:702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eijkelenboom A, Burgering BMT (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97. https://doi.org/10.1038/nrm3507

    Article  CAS  PubMed  Google Scholar 

  22. Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207. https://doi.org/10.1111/acel.12427

    Article  CAS  PubMed  Google Scholar 

  23. Fasano C, Disciglio V, Bertora S et al (2019) Foxo3a from the nucleus to the mitochondria: a round trip in cellular stress response. Cells 8:1–28. https://doi.org/10.3390/cells8091110

    Article  CAS  Google Scholar 

  24. Kops GJPL, Dansen TB, Polderman PE et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321. https://doi.org/10.1038/nature01036

    Article  CAS  PubMed  Google Scholar 

  25. Marinkovic D, Zhang X, Yalcin S et al (2007) Foxo3 is required for the regulation of oxidative stress in erythropoiesis. 117:2133–2144. https://doi.org/10.1172/JCI31807DS1

  26. Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science (80- ) 295:2450–2452. https://doi.org/10.1126/science.1069004

  27. Chiribau CB, Cheng L, Cucoranu IC et al (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217. https://doi.org/10.1074/jbc.M710610200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olmos Y, Sánchez-Gómez FJ, Wild B et al (2013) SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antioxidants Redox Signal 19:1507–1521. https://doi.org/10.1089/ars.2012.4713

    Article  CAS  Google Scholar 

  29. Huang H, Regan KM, Lou Z et al (2006) CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science (80-) 314:294–297. https://doi.org/10.1126/science.1130512

  30. Yuan Z, Becker EBE, Merlo P et al (2008) Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science (80-) 319:1665–1668. https://doi.org/10.1126/science.1152337

  31. Jeong OS, Chae YC, Jung H et al (2016) Long noncoding RNA linc00598 regulates CCND2 transcription and modulates the G1 checkpoint. Sci Rep 6:1–11. https://doi.org/10.1038/srep32172

    Article  CAS  Google Scholar 

  32. Dall’Acqua A, Sonego M, Pellizzari I et al (2017) CDK6 protects epithelial ovarian cancer from platinum‐induced death via FOXO3 regulation. EMBO Mol Med 9:1415–1433. https://doi.org/10.15252/emmm.201607012

  33. Sunters A, Fernández De Mattos S, Stahl M et al (2003) FoxO3a transcriptional regulation of bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278:49795–49805. https://doi.org/10.1074/jbc.M309523200

    Article  CAS  PubMed  Google Scholar 

  34. Essafi A, Fernández De Mattos S, Hassen YAM et al (2005) Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24:2317–2329. https://doi.org/10.1038/sj.onc.1208421

    Article  CAS  PubMed  Google Scholar 

  35. Kok S, Lin L, Hou K et al (2013) Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of SIRT1/FoxO3a signaling. Arthritis Rheum 65:639–649. https://doi.org/10.1002/art

    Article  CAS  PubMed  Google Scholar 

  36. Matsuzaki H, Lee S, Maeda M et al (2016) FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line. J Immunotoxicol 13:620–627. https://doi.org/10.3109/1547691X.2016.1143539

    Article  CAS  PubMed  Google Scholar 

  37. Shukla S, Sharma A, Pandey VK et al (2016) Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells. Toxicol Appl Pharmacol 291:70–83. https://doi.org/10.1016/j.taap.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  38. Van Der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxidants Redox Signal 14:579–592. https://doi.org/10.1089/ars.2010.3419

    Article  CAS  Google Scholar 

  39. Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: The chemistry of proteome diversifications. Angew Chemie - Int Ed 44:7342–7372. https://doi.org/10.1002/anie.200501023

    Article  CAS  Google Scholar 

  40. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511. https://doi.org/10.1038/nchembio.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24. https://doi.org/10.1016/j.cbpa.2008.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  43. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240. https://doi.org/10.1038/nrg2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obsilova V, Vecer J, Herman P et al (2005) 14–3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44:11608–11617. https://doi.org/10.1021/bi050618r

    Article  CAS  PubMed  Google Scholar 

  45. Gui T, Burgering BMT (2021) FOXOs: masters of the equilibrium. FEBS J 1–22. https://doi.org/10.1111/febs.16221

  46. García-Hernández L, García-Ortega MB, Ruiz-Alcalá G et al (2022) The p38 MAPK components and modulators as biomarkers and molecular targets in cancer. Int J Mol Sci 23. https://doi.org/10.3390/ijms23010370

  47. Yang JY, Zong CS, Xia W et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148. https://doi.org/10.1038/ncb1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blasl AT, Schulze S, Qin C et al (2022) Post-translational lysine ac(et)ylation in health, ageing and disease

  49. Matsuzaki H, Daitoku H, Hatta M et al (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 102:11278–11283. https://doi.org/10.1073/pnas.0502738102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu H (2021) The roles of histone deacetylases in kidney development and disease. Clin Exp Nephrol 25:215–223. https://doi.org/10.1007/s10157-020-01995-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  52. Di Blasi R, Blyuss O, Timms JF et al (2021) Non-histone protein methylation: biological significance and bioengineering potential. ACS Chem Biol 16:238–250. https://doi.org/10.1021/acschembio.0c00771

    Article  CAS  PubMed  Google Scholar 

  53. Calnan DR, Webb AE, White JL et al (2012) Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 4:462–479. https://doi.org/10.18632/aging.100471

  54. Kudriaeva AA, Belogurov AA (2019) Proteasome: a nanomachinery of creative destruction. Biochemistry (Moscow) 84(1): 159-192

  55. Xieac Y, Wangd M, Xia M et al (2022) Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 292:120322. https://doi.org/10.1016/j.lfs.2021.119552

    Article  CAS  Google Scholar 

  56. Bernardo VS, Torres FF, Zucão ACA, da Silva DGH (2021) The interplay between molecular redox signaling and the ubiquitin-proteasome system: relevant aspects related to pathophysiological processes in human diseases. In: DUNCAN LT (ed) Advances in Health and Diseases, 44th ed. Nova Science Publishers, Inc, New York, pp 1–67

  57. Fu W, Ma Q, Chen L et al (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284:13987–14000. https://doi.org/10.1074/jbc.M901758200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi HH, Zou S, Wu JL et al (2020) EGF relays signals to COP1 and facilitates FOXO4 degradation to promote tumorigenesis. Adv Sci 7:1–17. https://doi.org/10.1002/advs.202000681

    Article  CAS  Google Scholar 

  59. Liu Y, Ao X, Jia Y et al (2022) The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med 100:997–1015. https://doi.org/10.1007/s00109-022-02219-x

    Article  CAS  PubMed  Google Scholar 

  60. Pirillo A, Svecla M, Catapano AL et al (2021) Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 117:1033–1045. https://doi.org/10.1093/cvr/cvaa252

    Article  CAS  PubMed  Google Scholar 

  61. Shin H, Cha HJ, Na K et al (2018) O-GlcN acylation of the tumor suppressor FOXO3 triggers aberrant cancer cell growth. Cancer Res 78:1214–1224. https://doi.org/10.1158/0008-5472.CAN-17-3512

    Article  CAS  PubMed  Google Scholar 

  62. Guo Z, Kozlov S, Lavin MF et al (2010) ATM activation by oxidative stress. Science (80-) 330:517–521. https://doi.org/10.1126/science.1192912

  63. Anastasiou D, Poulogiannis G, Asara JM et al (2012) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (80-) 334:1278–1283. https://doi.org/10.1126/science.1211485.Inhibition

  64. Putker M, Vos HR, Van Dorenmalen K et al (2015) Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxidants Redox Signal 22:15–28. https://doi.org/10.1089/ars.2014.6056

    Article  CAS  Google Scholar 

  65. Hopkins BL, Nadler M, Skoko JJ et al (2018) A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxidants Redox Signal 28:62–77. https://doi.org/10.1089/ars.2016.6871

    Article  CAS  Google Scholar 

  66. van Dam L, Pagès-Gallego M, Polderman PE et al (2021) The human 2-cys peroxiredoxins form widespread, cysteine-dependent-and isoform-specific protein-protein interactions. Antioxidants 10. https://doi.org/10.3390/antiox10040627

  67. Ao X, Ding W, Zhang Y et al (2020) TCF21: a critical transcription factor in health and cancer. J Mol Med 98:1055–1068. https://doi.org/10.1007/s00109-020-01934-7

    Article  CAS  PubMed  Google Scholar 

  68. Klotz LO, Steinbrenner H (2017) Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol 13:646–654. https://doi.org/10.1016/j.redox.2017.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tauber S, Steinbrenner H, Klotz L-O (2020) FoxO transcription factors in the control of redox homeostasis and fuel metabolism. Elsevier Inc

  70. Zhang P, Wu W, Chen Q, Chen M (2019) Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 16:1–12. https://doi.org/10.1515/jib-2019-0027

    Article  Google Scholar 

  71. Yang WB, Chen PH, Hsu TI et al (2014) Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 5:740–753. https://doi.org/10.18632/oncotarget.1608

  72. Segura MF, Hanniford D, Menendez S et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106:1814–1819. https://doi.org/10.1073/pnas.0808263106

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hudson MB, Rahnert JA, Zheng B et al (2014) miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol - Cell Physiol 307:314–319. https://doi.org/10.1152/ajpcell.00395.2013

    Article  CAS  Google Scholar 

  74. He J, Qi H, Chen F, Cao C (2017) MicroRNA-25 contributes to cisplatin resistance in gastric cancer cells by inhibiting forkhead box O3a. Oncol Lett 14:6097–6102. https://doi.org/10.3892/ol.2017.6982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang L, Pickard K, Jenei V et al (2013) MiR-153 supports colorectal cancer progression via pleiotropic effects that enhance invasion and chemotherapeutic resistance. Cancer Res 73:6435–6447. https://doi.org/10.1158/0008-5472.CAN-12-3308

    Article  CAS  PubMed  Google Scholar 

  76. Fu Q, Du Y, Yang C et al (2016) An oncogenic role of miR-592 in tumorigenesis of human colorectal cancer by targeting Forkhead Box O3A (FoxO3A). Expert Opin Ther Targets 20:771–782. https://doi.org/10.1080/14728222.2016.1181753

    Article  CAS  PubMed  Google Scholar 

  77. Lin H, Dai T, Xiong H et al (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 5:e15797. https://doi.org/10.1371/journal.pone.0015797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nho RS, Im J, Ho YY, Hergert P (2014) MicroRNA-96 inhibits Foxo3a function in IPF fibroblasts on type I collagen matrix. Am J Physiol - Lung Cell Mol Physiol 307:L632–L642. https://doi.org/10.1152/ajplung.00127.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang H, Xia J, Hu Q et al (2021) Long non-coding RNA XIST promotes cerebral ischemia/reperfusion injury by modulating miR-27a-3p/FOXO3 signaling. Mol Med Rep 24. https://doi.org/10.3892/mmr.2021.12205

  80. Wang F, Chen X, Sun B et al (2021) Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 236:5162–5175. https://doi.org/10.1002/jcp.30222

    Article  CAS  PubMed  Google Scholar 

  81. Wang L, Niu Y, He G, Wang J (2019) Down-regulation of lncRNA GAS5 attenuates neuronal cell injury through regulating miR-9/FOXO3 axis in cerebral ischemic stroke. RSC Adv 9:16158–16166. https://doi.org/10.1039/c9ra01544b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhai W, Zhu R, Ma J et al (2019) A positive feed-forward loop between LncRNA-URRCC and EGFL7/P-AKT/FOXO3 signaling promotes proliferation and metastasis of clear cell renal cell carcinoma. Mol Cancer 18:1–15. https://doi.org/10.1186/s12943-019-0998-y

    Article  Google Scholar 

  83. Yu XY, Ma CQ, Sheng YH (2022) circRNA CRIM1 regulates the migration and invasion of bladder cancer by targeting miR182/Foxo3a axis. Clin Transl Oncol 24:1195–1203. https://doi.org/10.1007/s12094-021-02768-6

    Article  CAS  PubMed  Google Scholar 

  84. Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24:357–370. https://doi.org/10.1038/cdd.2016.133

    Article  CAS  PubMed  Google Scholar 

  85. Pisoschi AM, Pop A, Iordache F et al (2020) Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 209:112891. https://doi.org/10.1016/j.ejmech.2020.112891

    Article  CAS  PubMed  Google Scholar 

  86. Pala FS, Gürkan H (2008) The role of free radicals in ethiopathogenesis of diseases. Adv Mol Biol 1:1–9

    Google Scholar 

  87. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  88. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20:689–709. https://doi.org/10.1038/s41573-021-00233-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharma N (2014) Free radicals, antioxidants and disease. Biol Med 6:1–6. https://doi.org/10.4172/0974-8369.1000214

    Article  CAS  Google Scholar 

  90. Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 43:550–557. https://doi.org/10.1007/s001250051342

    Article  CAS  PubMed  Google Scholar 

  91. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:1–8. https://doi.org/10.1186/1477-3163-5-14

    Article  CAS  Google Scholar 

  92. Carlsen MH, Halvorsen BL, Holte K et al (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:1–11. https://doi.org/10.1186/1475-2891-9-3

    Article  Google Scholar 

  93. Gao B, Flores SC, Leff JA et al (2003) Synthesis and anti-inflammatory activity of a chimeric recombinant superoxide dismutase: SOD2/3. Am J Physiol - Lung Cell Mol Physiol 284:917–925. https://doi.org/10.1152/ajplung.00374.2002

    Article  Google Scholar 

  94. Halliwell B (2000) The antioxidant paradox. Lancet 355:1179–1180. https://doi.org/10.1016/S0140-6736(00)02075-4

    Article  CAS  PubMed  Google Scholar 

  95. Halliwell B (1991) Drug antioxidant effect. A Basis for Drug Selection? Drugs 42:569–605. https://doi.org/10.1097/00003643-199603000-00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Augustyniak A, Bartosz G, Čipak A et al (2010) Natural and synthetic antioxidants: An updated overview. Free Radic Res 44:1216–1262. https://doi.org/10.3109/10715762.2010.508495

    Article  CAS  PubMed  Google Scholar 

  97. Levonen A-L, Hill BG, Kansanen E et al (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207. https://doi.org/10.1038/s41395-018-0061-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Groeger AL, Freeman BA (2010) Signaling actions of electrophiles: Anti-inflammatory therapeutic candidates. Mol Interv 10:39–50. https://doi.org/10.1124/mi.10.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yates MS, Kensler TW (2007) Chemopreventive promise of targeting the Nrf2 pathway. Drug News Perspect 20:109–117. https://doi.org/10.1358/dnp.2007.20.2.108343

    Article  CAS  PubMed  Google Scholar 

  100. Orea-Soufi A, Paik J, Bragança J et al (2022) FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci 43:1070–1084. https://doi.org/10.1016/j.tips.2022.09.010

    Article  CAS  PubMed  Google Scholar 

  101. Calissi G, Lam EWF, Link W (2021) Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 20:21–38. https://doi.org/10.1038/s41573-020-0088-2

    Article  CAS  PubMed  Google Scholar 

  102. Franco SS, De FL, Ghaffari S et al (2014) Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica 99:267–275. https://doi.org/10.3324/haematol.2013.090076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Park SH, Chung YM, Ma J et al (2016) Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo. Oncotarget 7:42110–42125. https://doi.org/10.18632/oncotarget.9881

  104. Sato A, Sunayama J, Okada M et al (2012) Glioma-Initiating Cell Elimination by Metformin Activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824. https://doi.org/10.5966/sctm.2012-0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hou X, Song J, Li XN et al (2010) Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun 396:199–205. https://doi.org/10.1016/j.bbrc.2010.04.017

    Article  CAS  PubMed  Google Scholar 

  106. Yu W, Gao B, Li N et al (2017) Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A- Parkin-mediated mitophagy. BBA - Mol Basis Dis 1863:1973–1983. https://doi.org/10.1016/j.bbadis.2016.10.021

    Article  CAS  Google Scholar 

  107. Wu Z, Huang A, Yan J et al (2017) Resveratrol ameliorates cardiac dysfunction by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway in a rat model of diabetic cardiomyopathy. J Cardiovasc Pharmacol 70:184–193. https://doi.org/10.1097/FJC.0000000000000504

    Article  CAS  PubMed  Google Scholar 

  108. Asadi S, Rahimi Z, Saidijam M et al (2018) Effects of Resveratrol on FOXO1 and FOXO3a genes expression in adipose tissue, serum insulin, insulin resistance and serum SOD activity in type 2 diabetic rats. Int J Mol Cell Med 7:176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Cao Y, Chen J et al (2019) A new possible mechanism by which punicalagin protects against liver injury induced by type 2 diabetes mellitus: upregulation of autophagy via the Akt/FoxO3a signaling pathway. J Agric Food Chem 67:13948–13959. https://doi.org/10.1021/acs.jafc.9b05910

    Article  CAS  PubMed  Google Scholar 

  110. Schinner S, Scherbaum WA, Bornstein SR, Barthel A (2005) Molecular mechanisms of insulin resistance. Diabet Med 22:674–682

    Article  CAS  PubMed  Google Scholar 

  111. Teumer A, Qi Q, Nethander M et al (2016) Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell 15:811–824. https://doi.org/10.1111/acel.12490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luong N, Davies CR, Wessells RJ et al (2006) Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 4:133–142. https://doi.org/10.1016/j.cmet.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  113. Su B, Liu H, Wang X et al (2009) Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson’s disease. Mol Neurodegener 4:1–5. https://doi.org/10.1186/1750-1326-4-32

    Article  CAS  Google Scholar 

  114. Pino E, Amamoto R, Zheng L et al (2014) FOXO3 determines the accumulation α-synuclein and controls the fate of dopaminergic neurons in the substantia nigra. Hum Mol Genet 23:1435–1452

    Article  CAS  PubMed  Google Scholar 

  115. Wong HKA, Veremeyko T, Patel N et al (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092. https://doi.org/10.1093/hmg/ddt164

    Article  CAS  PubMed  Google Scholar 

  116. Qin W, Zhao W, Ho L et al (2008) Regulation of forkhead transcription factor foxo3a contributes to calorie restriction-induced prevention of Alzheimer ’ s disease-type amyloid neuropathology and spatial memory. Ann N Y Acad Sci 1147:335–347. https://doi.org/10.1196/annals.1427.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bellinger FP, He Q, Bellinger MT et al (2008) Association of Selenoprotein P with Alzheimer’s Pathology in Human Cortex. J Alzheimers Dis 15:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang H, Quirion R, Little PJ et al (2015) Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 99:527–537. https://doi.org/10.1016/j.neuropharm.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  119. Polter A, Yang S, Zmijewska AA et al (2009) Forkhead Box, Class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 65:150–159. https://doi.org/10.1016/j.biopsych.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  120. Steinman L (2009) A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 9:440–447. https://doi.org/10.1038/nri2548

    Article  CAS  PubMed  Google Scholar 

  121. Hur EM, Youssef S, Haws ME et al (2007) Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol 8:74–83. https://doi.org/10.1038/ni1415

    Article  CAS  PubMed  Google Scholar 

  122. Chung HW, Lim JH, Kim MY et al (2012) High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPAR a – FoxO3a – PGC-1 a pathway. Nephrol Dial Transpl 27:2213–2225. https://doi.org/10.1093/ndt/gfr613

    Article  CAS  Google Scholar 

  123. Liu DF, Li S, Zhu Q, Jiang W (2018) The involvement of miR-155 in blood pressure regulation in pregnant hypertension rat via targeting FOXO3a. Eur Rev Med Pharmacol Sci 22:6591–6598

    PubMed  Google Scholar 

  124. Lin J, Zheng Y, Zhang Z et al (2018) Suppression of endothelial-to-mesenchymal transition by SIRT (Sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension 72:350–360. https://doi.org/10.1161/HYPERTENSIONAHA.118.10482

    Article  CAS  PubMed  Google Scholar 

  125. Tsuchiya K, Westerterp M, Murphy AJ et al (2013) Expanded granulocyte/monocyte compartment in myeloid- specific triple FoxO knockout increases oxidative stress and accelerates atherosclerosis in mice. Circ Res 112:992–1003. https://doi.org/10.1161/CIRCRESAHA.112.300749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tucka J, Yu H, Gray K et al (2014) Akt1 regulates vascular smooth muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial remodeling and atherosclerosis. Arterioscler Thromb Vasc Biol 34:2421–2428. https://doi.org/10.1161/ATVBAHA.114.304284

    Article  CAS  PubMed  Google Scholar 

  127. Yu H, Fellows A, Foote K et al (2018) FOXO3a (Forkhead transcription factor o subfamily member 3a) links vascular smooth muscle cell apoptosis, matrix breakdown, atherosclerosis, and vascular remodeling through a novel pathway involving MMP13 (Matrix metalloproteinase 13). Arterioscler Thromb Vasc Biol 38:555–565. https://doi.org/10.1161/ATVBAHA.117.310502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tsuchiya K, Tanaka J, Shuiqing Y et al (2012) FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab 15:372–381. https://doi.org/10.1016/j.cmet.2012.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun G, Shen J, Wei X, Qi G (2021) Circular RNA Foxo3 Relieves Myocardial Ischemia / Reperfusion Injury by Suppressing Autophagy via Inhibiting HMGB1 by Repressing KAT7 in Myocardial Infarction. J Inflamm Res 14:6397–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lv W, Jiang J, Li Y et al (2020) MiR-302a-3p aggravates myocardial ischemia-reperfusion injury by suppressing mitophagy via targeting FOXO3. Exp Mol Pathol 117:1–9. https://doi.org/10.1016/j.yexmp.2020.104522

    Article  CAS  Google Scholar 

  131. Boal F, Roumegoux J, Alfarano C et al (2015) Apelin regulates FoxO3 translocation to mediate cardioprotective responses to myocardial injury and obesity. Sci Rep 5:1–17. https://doi.org/10.1038/srep16104

    Article  CAS  Google Scholar 

  132. Zheng T, Lu Y (2011) Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans. Curr Eye Res 36:449–455. https://doi.org/10.3109/02713683.2011.559301

    Article  CAS  PubMed  Google Scholar 

  133. Li J, Sun Q, Qiu X et al (2022) Downregulation of AMPK dependent FOXO3 and TFEB involves in the inhibition of autophagy in diabetic cataract. Curr Eye Res 47:555–564. https://doi.org/10.1080/02713683.2021.2009516

    Article  CAS  PubMed  Google Scholar 

  134. Kadiri M, Charbonneau M, Lalanne C et al (2022) 14-3-3 η promotes invadosome formation via the FOXO3 – snail axis in rheumatoid arthritis fibroblast-like synoviocytes. Int J Mol Sci 23:1–17

    Google Scholar 

  135. Liu N, Feng X, Wang W et al (2017) Paeonol protects against TNF-α-induced proliferation and cytokine release of rheumatoid arthritis fibroblast-like synoviocytes by upregulating FOXO3 through inhibition of miR-155 expression. Inflamm Res 66:603–610. https://doi.org/10.1007/s00011-017-1041-7

    Article  CAS  PubMed  Google Scholar 

  136. Manda G, Isvoranu G, Comanescu MV et al (2015) The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 5:347–357. https://doi.org/10.1016/j.redox.2015.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yadava RK, Chauhana AS, Zhuanga L, Gan B (2018) FoxO transcription factors in cancer metabolism. Semin Cancer Biol 50:65–76. https://doi.org/10.1016/j.semcancer.2018.01.004

    Article  CAS  Google Scholar 

  138. Hornsveld M, Smits LMM, Meerlo M et al (2018) FOXO transcription factors both suppress and support breast cancer progression. Cancer Res 78:2356–2369. https://doi.org/10.1158/0008-5472.CAN-17-2511

    Article  CAS  PubMed  Google Scholar 

  139. Alasiri G, Fan LY, Zona S et al (2017) ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 462:67–81. https://doi.org/10.1016/j.mce.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  140. Xiao Z, Han L, Lee H et al (2017) Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun 8:1–13. https://doi.org/10.1038/s41467-017-00902-z

    Article  CAS  Google Scholar 

  141. Liu H, Yin J, Wang H et al (2015) FOXO3a modulates WNT/β -catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal 27:510–518. https://doi.org/10.1016/j.cellsig.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  142. Hwang J, Rajendrasozhan S, Yao H et al (2011) FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J Immunol 187:987–998. https://doi.org/10.4049/jimmunol.1001861

    Article  CAS  PubMed  Google Scholar 

  143. Ganesan S, Unger BL, Comstock AT et al (2013) Aberrantly activated EGFR contributes to enhanced IL-8 expression in COPD airways epithelial cells via regulation of nuclear FoxO3A. Thorax 68:131–141. https://doi.org/10.1136/thoraxjnl-2012-201719

    Article  PubMed  Google Scholar 

  144. Barkund S, Shah T, Ambatkar N et al (2015) FOXO3a gene polymorphism associated with asthma in indian population. Mol Biol Int 2015:1–7

    Article  Google Scholar 

  145. Liu B, Sun H, Wang J et al (2021) Potential role for EZH2 in promotion of asthma through suppression of miR-34b transcription by inhibition of FOXO3. Lab Investig 101:998–1010. https://doi.org/10.1038/s41374-021-00585-7

    Article  CAS  PubMed  Google Scholar 

  146. Liu B, Wang J, Ren Z (2021) SKP2-promoted ubiquitination of FOXO3 promotes the development of asthma. J Immunol 206:2366–2375. https://doi.org/10.4049/jimmunol.2000387

    Article  CAS  PubMed  Google Scholar 

  147. Imraish A, Abu-Thiab T, Zihlif M (2021) IL-13 and FOXO3 genes polymorphisms regulate IgE levels in asthmatic patients. Biomed Rep 14:1–7. https://doi.org/10.3892/br.2021.1431

    Article  CAS  Google Scholar 

  148. Li L, Kang H, Zhang Q et al (2019) FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest 129:2374–2389

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lin F (2020) Molecular regulation and function of FoxO3 in chronic kidney disease. Curr Opin Nephrol Hypertens 29:439–445. https://doi.org/10.1097/MNH.0000000000000616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nlandu-khodo S, Osaki Y, Scarfe L et al (2020) Tubular β -catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 5:1–17

    Article  Google Scholar 

  151. Tothova Z, Kollipara R, Huntly BJ et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339. https://doi.org/10.1016/j.cell.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  152. Menon V, Ghaffari S (2018) Transcription factors FOXO in the regulation of homeostatic hematopoiesis. Curr Opin Hematol 1–9. https://doi.org/10.1097/MOH.0000000000000441

  153. Zhang Y, Chang A, Sumazin P, Sheehan V (2017) Piceatannol induces fetal hemoglobin in erythroid progenitor cells from patients with sickle cell disease. Blood 130:2221. https://doi.org/10.1182/blood.V130.Suppl

    Article  Google Scholar 

  154. Zhang Y, Paikari A, Sumazin P et al (2018) Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 132:321–333. https://doi.org/10.1182/blood-2017-11-814335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Simões V, Felix F, Alves N et al (2020) Relationship of polymorphism rs3800231 in FOXO3 gene and clinical severity with oxidative stress markers in sickle cell disease. Meta Gene 24:100660. https://doi.org/10.1016/j.mgene.2020.100660

    Article  Google Scholar 

  156. Thanuthanakhun N, Nuntakarn L, Sampattavanich S et al (2017) Investigation of FoxO3 dynamics during erythroblast development in β -thalassemia major. PLoS ONE 12:1–13. https://doi.org/10.1371/journal.pone.0187610November

    Article  Google Scholar 

  157. Zhang X, Campreciós G, Rimmelé P et al (2015) FOXO3-mTOR Metabolic Cooperation in the Regulation of Erythroid Cell Maturation and Homeostasis. 89:954–963. https://doi.org/10.1002/ajh.23786.FOXO3-mTOR

  158. Costantini D (2019) Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J Exp Biol 222. https://doi.org/10.1242/jeb.194688

  159. McIntyre RL, Liu YJ, Hu M et al (2022) Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 78:101621. https://doi.org/10.1016/j.arr.2022.101621

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant number 406700/2021–4), and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

VSB and FFT conceived, reviewed the literature, and wrote the manuscript. DGHS reviewed and edited the manuscript. All authors were involved in reading and approving the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Danilo Grünig Humberto da Silva.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, V.S., Torres, F.F. & da Silva, D.G.H. FoxO3 and oxidative stress: a multifaceted role in cellular adaptation. J Mol Med 101, 83–99 (2023). https://doi.org/10.1007/s00109-022-02281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02281-5

Keywords

Navigation