Skip to main content

Advertisement

Log in

Calorie restriction and breast cancer treatment: a mini-review

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Siegel R, Miller KD, Fuchs HE, Jemal A (2022) Cancer Statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A (2021) Breast cancer–epidemiology, risk factors, classification, prognostic markers, and current treatment strategies–an updated review. Cancers 13(17):4287. https://doi.org/10.3390/cancers13174287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schick J, Ritchie RP, Restini C (2021) Breast cancer therapeutics and biomarkers: past, present, and future approaches. Breast Cancer Basic Clin Res 15:1–19. https://doi.org/10.1177/1178223421995854

    Article  Google Scholar 

  4. Mutebi M, Anderson BO (2020) Breast cancer treatment: a phased approach to implementation. Cancer 126(S10):2365–2378. https://doi.org/10.1002/cncr.32910

    Article  PubMed  Google Scholar 

  5. De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I (2019) Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients 11(7):1514. https://doi.org/10.3390/nu11071514

    Article  CAS  PubMed Central  Google Scholar 

  6. Ibrahim EM, Al-Foheidi MH, Al-Mansour MM (2021) Energy and caloric restriction, and fasting and cancer: a narrative review. Supp Care Cancer 29:2299–2304. https://doi.org/10.1007/s00520-020-05879-y

    Article  Google Scholar 

  7. https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf. Last Accessed 1 June 2022

  8. Acosta-Rodríguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS (2017) Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26(1):267-277.e2. https://doi.org/10.1016/j.cmet.2017.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14(2):275–287. https://doi.org/10.1089/ars.2010.3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19(2):181–192. https://doi.org/10.1016/j.cmet.2013.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F (2022) The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 14(1):e14418. https://doi.org/10.15252/emmm.202114418

    Article  CAS  PubMed  Google Scholar 

  12. Scholtens EL, Krebs JD, Corley BT, Hall RM (2020) Intermittent fasting 5:2 diet: what is the macronutrient and micronutrient intake and composition? Clin Nutr 39(11):3354–3360. https://doi.org/10.1016/j.clnu.2020.02.022

    Article  CAS  PubMed  Google Scholar 

  13. Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58. https://doi.org/10.1016/j.arr.2016.10.005

    Article  PubMed  Google Scholar 

  14. Regmi P, Heilbronn LK (2020) Time-restricted eating: benefits, mechanisms, and challenges in translation. iScience 23(6):101161. https://doi.org/10.1016/j.isci.2020.101161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S (2020) Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 64:101189. https://doi.org/10.1016/j.arr.2020.101189

    Article  PubMed  PubMed Central  Google Scholar 

  16. Longo VD, Di Tano M, Mattson MP, Guidi N (2021) Intermittent and periodic fasting, longevity and disease. Nat Aging 1:47–59. https://doi.org/10.1038/s43587-020-00013-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duregon E, Pomatto-Watson LCD, Bernier M, Price NL, De Cabo R (2021) Intermittent fasting: from calories to time restriction. GeroSci 43:1083–1092. https://doi.org/10.1007/s11357-021-00335-z

    Article  Google Scholar 

  18. Bose S, Allen AE, Locasale JW (2020) The molecular link from diet to cancer cell metabolism. Mol Cell 78(6):1034–1044. https://doi.org/10.1016/j.molcel.2020.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M (2021) Possible biochemical processes underlying the positive health effects of plant-based diets–a narrative review. Nutrients 13(8):2593. https://doi.org/10.3390/nu13082593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwangbo D-S, Lee H-Y, Abozaid LS, Min K-J (2020) Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients 12(4):1194. https://doi.org/10.3390/nu12041194

    Article  PubMed Central  Google Scholar 

  21. Eriau E, Paillet J, Kroemer G, Pol JG (2021) Metabolic reprogramming by reduced calorie intake or pharmacological caloric restriction mimetics for improved cancer immunotherapy. Cancers (Basel) 13(6):1260. https://doi.org/10.3390/cancers13061260

    Article  CAS  Google Scholar 

  22. Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction - a promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochim Biophys Acta 1867:29–41. https://doi.org/10.1016/j.bbcan.2016.11.002

    Article  CAS  Google Scholar 

  23. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim S-H, Park J (2020) Revisiting the Warburg effect: diet-based strategies for cancer prevention. BioMed Res Intl 2020(8105735):1–9. https://doi.org/10.1155/2020/8105735

    Article  CAS  Google Scholar 

  25. Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction - a promising anti-cancer approach: from molecular mechanisms to clinical trials. Biochim Biophys Acta (BBA) Rev Cancer 1867(1):29–41. https://doi.org/10.1016/j.bbcan.2016.11.002

    Article  CAS  Google Scholar 

  26. Marín-Aguilar F, Pavillard LE, Giampieri F, Bullón P, Cordero MD (2017) Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds. Int J Mol Sci 18(288):1–24. https://doi.org/10.3390/ijms18020288

    Article  CAS  Google Scholar 

  27. Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol 10:2064. https://doi.org/10.3389/fonc.2020.578418

    Article  Google Scholar 

  28. Elibol B, Kilic U (2018) High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol 9:614. https://doi.org/10.3389/fendo.2018.00614

    Article  Google Scholar 

  29. Zhang J, Deng Y, Khoo BL (2020) Fasting to enhance cancer treatment in models: the next steps. J Biomed Sci 27:58. https://doi.org/10.1186/s12929-020-00651-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K (2018) Molecular actions of PPARα in lipid metabolism and inflammation. Endocrine Rev 39(5):760–802. https://doi.org/10.1210/er.2018-00064

    Article  Google Scholar 

  31. Lu K, Dong S, Wu X, Jin R, Chen H (2021) Probiotics in cancer. Front. Oncol 11:408. https://doi.org/10.3389/fonc.2021.638148

    Article  Google Scholar 

  32. Pistollato F, Forbes-Hernandez TY, Iglesias RC, Ruiz R, Zabaleta ME, Dominguez I, Cianciosi D, Quiles JL, Giampieri F, Battino M (2021) Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: possible implications for cancer treatment. Sem Cancer Biol 73:45–57. https://doi.org/10.1016/j.semcancer.2020.11.017

    Article  CAS  Google Scholar 

  33. Yin J, Ren W, Huang X, Li T, Yin Y (2018) Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 1869:256–262. https://doi.org/10.1016/j.bbcan.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  34. Akinyele O, Wallace HM (2021) Characterising the response of human breast cancer cells to polyamine modulation. Biomolecules 11(5):743. https://doi.org/10.3390/biom11050743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pegg AE (2014) The function of spermine. IUBMB Life 66(1):8–18. https://doi.org/10.1002/iub.1237

    Article  CAS  PubMed  Google Scholar 

  36. Tse RT, Wong CY, Chiu PK, Ng CF (2022) The potential role of spermine and its acetylated derivative in human malignancies. Int J Mol Sci 23(3):1258. https://doi.org/10.3390/ijms23031258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P (2014) Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 148(2):233–248. https://doi.org/10.1007/s10549-014-3156-7

    Article  CAS  PubMed  Google Scholar 

  38. Stabellini G, Calastrini C, Gagliano N, Dellavia C, Moscheni C, Vizzotto L, Occhionorelli S, Gioia M (2003) Polyamine levels and ornithine decarboxylase activity in blood and erythrocytes in human diseases. Int J Clin Pharmacol Res 23(1):17–22

    CAS  PubMed  Google Scholar 

  39. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376(Pt 1):1–14. https://doi.org/10.1042/BJ20031327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fahrmann JF, Vykoukal J, Fleury A, Tripathi S, Dennison JB, Murage E, Wang P, Yu CY, Capello M, Creighton CJ et al (2020) Association between plasma diacetylspermine and tumor spermine synthase with outcome in triple-negative breast cancer. J Natl Cancer Inst 112(6):607–616. https://doi.org/10.1093/jnci/djz182

    Article  PubMed  Google Scholar 

  41. Soda K, Uemura T, Sanayama H, Igarashi K, Fukui T (2021) Polyamine-rich diet elevates blood spermine levels and inhibits pro-inflammatory status: an interventional study. Med Sci (Basel) 9(2):22. https://doi.org/10.3390/medsci9020022

    Article  CAS  Google Scholar 

  42. Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G (2020) Nutritional aspects of spermidine. Ann Rev Nutr 40:135–159. https://doi.org/10.1146/annurev-nutr-120419-015419

    Article  CAS  Google Scholar 

  43. Mirzaei H, Suarez JA, Longo VD (2014) Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25(11):558–566. https://doi.org/10.1016/j.tem.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA Jr, Toker A (2020) Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. J Biol Chem 295(19):6263–6277. https://doi.org/10.1074/jbc.RA119.012376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laron Z (2001) Insulin-like growth factor (IGF-1): a growth hormone. J Clin Pathol Mol Pathol 54:311–316. https://doi.org/10.1136/mp.54.5.311

    Article  CAS  Google Scholar 

  46. Hua H, Kong Q, Yin J, Zhang J, Jiang Y (2020) Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 13(64):1–17. https://doi.org/10.1186/s13045-020-00904-3

    Article  CAS  Google Scholar 

  47. Monson KR, Goldberg M, Wu H-C, Santella RM, Chung WK, Terry MB (2020) Circulating growth factor concentrations and breast cancer risk: a nested case-control study of IGF-1, IGFBP-3, and breast cancer in a family-based cohort. Breast Cancer Res 22(109):105. https://doi.org/10.1186/s13058-020-01352-0

    Article  CAS  Google Scholar 

  48. Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E (2018) Molecular signatures of the insulin-like growth factor 1-mediated epithelial-mesenchymal transition in breast, lung and gastric cancers. Int J Mol Sci 19(2411):1–24. https://doi.org/10.3390/ijms19082411

    Article  CAS  Google Scholar 

  49. Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M (2020) PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 10:360. https://doi.org/10.3389/fonc.2020.00360

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jiang T, Zhang G, Lou Z (2020) Role of the sterol regulatory element binding protein pathway in tumorigenesis. Front Oncol 10:1788. https://doi.org/10.3389/fonc.2020.01788

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dong C, Wu J, Chen Y, Nie J, Chen C (2021) Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol 15:628690. https://doi.org/10.3389/fphar.2021.628690

    Article  CAS  Google Scholar 

  52. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542. https://doi.org/10.1038/nrc.2017.53

    Article  CAS  PubMed  Google Scholar 

  53. Amaravadi RK, Kimmelman AC, Debnath J (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 9(9):1167–1181. https://doi.org/10.1158/2159-8290.CD-19-0292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Csizmadia T, Juhász G (2020) Crinophagy mechanisms and its potential role in human health and disease. Prog Mol Biol Transl Sci 172:239–255. https://doi.org/10.1016/bs.pmbts.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  55. Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, Fusco G, Capozzi M, Gioia GD, Budillon A et al (2020) Targeting autophagy in breast cancer. Int J Mol Sci 21(21):7836. https://doi.org/10.3390/ijms21217836

    Article  CAS  PubMed Central  Google Scholar 

  56. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S, Macleod KF (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15(8):1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, Honn KV (1995) Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 55(5):1002–1005

    CAS  PubMed  Google Scholar 

  60. Saito H, Inazawa J, Saito S, Kasumi F, Koi S, Sagae S, Kudo R, Saito J, Noda K, Nakamura Y (1993) Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res 53(14):3382–3385

    CAS  PubMed  Google Scholar 

  61. Tangir J, Muto MG, Berkowitz RS, Welch WR, Bell DA, Mok SC (1996) A 400 kb novel deletion unit centromeric to the BRCA1 gene in sporadic epithelial ovarian cancer. Oncogene 12(4):735–740

    CAS  PubMed  Google Scholar 

  62. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/JCI20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676. https://doi.org/10.1038/45257

    Article  CAS  PubMed  Google Scholar 

  64. Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12(4):485–490. https://doi.org/10.1158/1541-7786.MCR-13-0614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lock R, Kenific CM, Leidal AM, Salas E, Debnath J (2014) Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 4(4):466–479. https://doi.org/10.1158/2159-8290.CD-13-0841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chung HY, Kim DH, Bang E, Yu BP (2020) Impacts of calorie restriction and intermittent fasting on health and diseases: current trends. Nutrients 12(10):2948. https://doi.org/10.3390/nu12102948

    Article  PubMed Central  Google Scholar 

  67. Chung KW, Chung HY (2019) The effects of calorie restriction on autophagy: role on aging intervention. Nutrients 11(12):2923. https://doi.org/10.3390/nu11122923

    Article  PubMed Central  Google Scholar 

  68. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G et al (2017) Microenvironmental autophagy promotes tumour growth. Nature 541(7637):417–420. https://doi.org/10.1038/nature20815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang Y, Karsli-Uzunbas G, Poillet-Perez L, Sawant A, Hu ZS, Zhao Y, Moore D, Hu W, White E (2020) Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev 34(9–10):688–700. https://doi.org/10.1101/gad.335570.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930. https://doi.org/10.1101/gad.287524.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, Liu C, Jin H, Wang Y, Jiang G et al (2017) ATG7 Overexpression is crucial for tumorigenic growth of bladder cancer in vitro and in vivo by targeting the ETS2/miRNA196b/FOXO1/p27 axis. Mol Ther Nucleic Acids 7:299–313. https://doi.org/10.1016/j.omtn.2017.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun S, Wang Z, Tang F, Hu P, Yang Z, Xue C, Gong J, Shi L, Xie C (2016) ATG7 promotes the tumorigenesis of lung cancer but might be dispensable for prognosis predication: a clinicopathologic study. Onco Targets Ther 9:4975–4981. https://doi.org/10.2147/OTT.S107876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y, Ahn EE, Fodstad O, Tan M (2013) Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem 288(13):9165–9176. https://doi.org/10.1074/jbc.M112.422071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW (2021) Emerging roles of ATG7 in human health and disease. EMBO Mol Med 13:e14824. https://doi.org/10.15252/emmm.202114824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS (2018) Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 73(suppl 1):e814s. https://doi.org/10.6061/clinics/2018/e814s

    Article  Google Scholar 

  76. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16(7):487–511. https://doi.org/10.1038/nrd.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, Khan SA, Loibl S, Morris EA, Perez A et al (2021) Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO Guideline. J Clin Oncol 39(13):1485–1505. https://doi.org/10.1200/JCO.29.03399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Asaoka M, Gandhi S, Ishikawa T, Takabe K (2020) Neoadjuvant chemotherapy for breast cancer: past, present, and future. Breast Cancer Basic Clin Res 14:1–8. https://doi.org/10.1177/1178223420980377

    Article  Google Scholar 

  79. Haussmann J, Corradini S, Nestle-Kraemling C, Bölke E, Njanang FJD, Tamaskovics B, Orth K, Ruckhaeberle E, Fehm T, Mohrmann S et al (2020) Recent advances in radiotherapy of breast cancer. Radiat Oncol 15:71. https://doi.org/10.1186/s13014-020-01501-x

    Article  PubMed  PubMed Central  Google Scholar 

  80. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Breast cancer. The Lancet 397(10286):1750–1769. https://doi.org/10.1016/S0140-6736(20)32381-3

    Article  CAS  Google Scholar 

  81. Chaudhuri S, Thomas S, Munster P (2021) Immunotherapy in breast cancer: a clinician’s perspective. J Nat Cancer Cent 1(2):47–57. https://doi.org/10.1016/j.jncc.2021.01.001

    Article  Google Scholar 

  82. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F (2019) Breast Cancer Nat Rev Dis Primers 5:66. https://doi.org/10.1038/s41572-019-0111-2

    Article  PubMed  Google Scholar 

  83. Alidadi M, Banach M, Guest PC, Bo S, Jamialahmadi T, Sahebkar A (2021) The effect of caloric restriction and fasting on cancer. Sem Cancer Biol 73:30–44. https://doi.org/10.1016/j.semcancer.2020.09.010

    Article  CAS  Google Scholar 

  84. Rogozina OP, Bonorden MJL, Seppanen CN, Grande JP, Cleary MP (2011) Effect of chronic and intermittent calorie restriction on serum adiponectin and leptin and mammary tumorigenesis. Cancer Prev Res (Phila) 4(4):568–581. https://doi.org/10.1158/1940-6207.CAPR-10-0140

    Article  CAS  Google Scholar 

  85. Yildirim EK, Balkaya M (2021) Dynamics of breast tumor incidence, tumor volume and serum metabolic hormones in calorie restricted rats. Biotechn Histochem 96(5):339–346. https://doi.org/10.1080/10520295.2020.1791955

    Article  CAS  Google Scholar 

  86. Claessens AKM, Ibragimova KIE, Geurts SME, Bos MEMM, Erdkamp FLG, Tjan-Heijnen VCG (2020) The role of chemotherapy in treatment of advanced breast cancer: an overview for clinical practice. Crit Rev Oncol Hematol 153:102988. https://doi.org/10.1016/j.critrevonc.2020.102988

    Article  PubMed  Google Scholar 

  87. Sadeghian M, Rahmani S, Khalesi S, Hejazi E (2021) A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 40(4):1669–1681. https://doi.org/10.1016/j.clnu.2020.10.037

    Article  CAS  PubMed  Google Scholar 

  88. Brandhorst S (2021) Fasting and fasting-mimicking diets for chemotherapy augmentation. Gerosci 43(3):1201–1216. https://doi.org/10.1007/s11357-020-00317-7

    Article  Google Scholar 

  89. Brandhorst S, Longo VD (2016) Fasting and caloric restriction in cancer prevention and treatment. In: Cramer TA, Schmitt C (eds) Metabolism in Cancer. Springer International Publishing, Cham, Switzerland, pp 241–266

    Chapter  Google Scholar 

  90. Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, Brandhorst S, Zucal C, Driehuis E, Ferrando L et al (2020) Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583(7817):620–624. https://doi.org/10.1038/s41586-020-2502-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Keyvani V, Kerachian MA (2014) The effect of fasting on the important molecular mechanisms related to cancer treatment. J Nutr Fasting Health 2(3):113–118. https://doi.org/10.22038/jfh.2014.3510

    Article  Google Scholar 

  92. Simone BA, Palagani A, Strickland K, Ko K, Jin L, Lim MK, Dan TD, Sarich M, Monti DA, Cristofanilli M et al (2018) Caloric restriction counteracts chemotherapy-induced inflammation and increases response to therapy in a triple negative breast cancer model. Cell Cycle 17(13):1536–1544. https://doi.org/10.1080/15384101.2018.1471314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, Kunz B, Brückner B, Sehouli J, Michalsen A (2018) The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18(1):476. https://doi.org/10.1186/s12885-018-4353-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG, Smit VTHBM, De Graaf H, Heijns JB, Portielje JEA et al (2020) Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun 11:3083. https://doi.org/10.1038/s41467-020-16138-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vernieri C, Ligorio F, Zattarin E, Rivoltini L, De Braud F (2020) Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun 11:4274. https://doi.org/10.1038/s41467-020-18194-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, Cheng C-W, Brandhorst S, Cohen P, Wei M et al (2016) Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16:360. https://doi.org/10.1186/s12885-016-2370-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lutes C, Zelig R, Radler DR (2020) Safety and feasibility of intermittent fasting during chemotherapy for breast cancer: a review of the literature. Top Clin Nutr 35(2):168–177. https://doi.org/10.1097/TIN.0000000000000215

    Article  Google Scholar 

  98. Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J (2020) Perspective: do fasting, caloric restriction, and diets increase sensitivity to radiotherapy? A literature review. Adv Nutr 11(5):1089–1101. https://doi.org/10.1093/advances/nmaa062

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yoshida K, Inoue T, Nojima K, Hirabayashi Y, Sado T (1997) Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc Natl Acad Sci USA 94:2615–2619. https://doi.org/10.1073/pnas.94.6.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saleh AD, Simone BA, Palazzo J, Savage JE, Sano Y, Dan T, Jin LJ, Champ CE, Zhao SP, Lim M et al (2013) Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12(12):1955–1963

    Article  CAS  Google Scholar 

  101. Habermann N, Makar KW, Abbenhardt C, Xiao L, Wang C-Y, Utsugi HK, Alfano CM, Campbell KL, Duggan C, Foster-Schubert KE et al (2015) No effect of caloric restriction or exercise on radiation repair capacity. Med Sci Sports Exer 47(5):896–904. https://doi.org/10.1249/MSS.0000000000000480

    Article  Google Scholar 

  102. Valayer S, Kim D, Fogtman A, Straube U, Winnard A, Caplan N, Green DA, van Leeuwen FHP, Weber T (2020) The potential of fasting and caloric restriction to mitigate radiation damage–a systematic review. Front Nutr 7:584543. https://doi.org/10.3389/fnut.2020.584543

    Article  PubMed  PubMed Central  Google Scholar 

  103. Akkin S, Varan G, Bilensoy E (2021) A review of cancer immunotherapy and applications of nanothechnology to chemoimmunotherapy of different cancers. Molecules 26:3382. https://doi.org/10.3390/molecules26113382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berger ER, Park T, Saridakis A, Golshan M, Greenup RA, Ahuja N (2021) Immunotherapy treatment for triple negative breast cancer. Pharmaceuticals 14(8):763. https://doi.org/10.3390/ph14080763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bayraktar S, Batoo S, Okuno S, Glück S (2019) Immunotherapy in breast cancer. J Carcinog 18:2. https://doi.org/10.4103/jcar.JCar_2_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thomas R, Al-Khadairi G, Decock J (2021) Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol 10:3464. https://doi.org/10.3389/fonc.2020.600573

    Article  Google Scholar 

  108. Cai J, Wang D, Zhang G, Guo X (2019) The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy. Onco Targets Ther 12:8437–8445. https://doi.org/10.2147/OTT.S221340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang J, Tian Q, Zhang M, Wang H, Wu L, Yang J (2021) Immune-related biomarkers in triple-negative breast cancer. Breast Cancer 28:792–805. https://doi.org/10.1007/s12282-021-01247-8

    Article  PubMed  Google Scholar 

  110. Jung LKL, Palladino MA, Calvano S, Mark DA, Good RA, Fernandes G (1982) Effect of calorie restriction on the production and responsiveness to interleukin 2 in (NZB × NZW)F1 mice. Clin Immuno Immunopath 25(2):295–301. https://doi.org/10.1016/0090-1229(82)90192-1

    Article  CAS  Google Scholar 

  111. Liu P, Zhao L, Kepp O, Kroemer G (2019) Crizotinib–a tyrosine kinase inhibitor that stimulates immunogenic cell death. OncoImmunol 8:1596652–1596653. https://doi.org/10.1080/2162402X.2019.1596652

    Article  Google Scholar 

  112. Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G et al (2019) A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunol 8(11):e1657375. https://doi.org/10.1080/2162402X.2019.1657375

    Article  Google Scholar 

  113. Kirkham AA, King K, Joy AA, Pelletier AB, Mackey JR, Young K, Zhu X, Meza-Junco J, Basi SK, Hiller JP et al (2021) Rationale and design of the Diet Restriction and Exercise-induced Adaptations in Metastatic breast cancer (DREAM) study: a 2-arm, parallel-group, phase II, randomized control trial of a short-term, calorie-restricted, and ketogenic diet plus exercise during intravenous chemotherapy versus usual care. BMC Cancer 21:1093. https://doi.org/10.1186/s12885-021-08808-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shingler E, Perry R, Mitchell A, England C, Perks C, Herbert G, Ness A, Atkinson C (2019) Dietary restriction during the treatment of cancer: results of a systematic scoping review. BMC Cancer 19:811. https://doi.org/10.1186/s12885-019-5931-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Purdue University Northwest College of Engineering and Sciences in support of Undergraduate Research for KMD in the Fall of 2020. This manuscript is sincerely dedicated in loving memory of the corresponding author’s sister-in-law Naty whom the family lost to breast cancer.

Author information

Authors and Affiliations

Authors

Contributions

MFIL contributed to the design, creation, conception, and the major writing of this mini-review. Undergraduate student KMD (BS Biology, Pre-Med) contributed and assisted in the writing and editing of the manuscript.

Corresponding author

Correspondence to Meden F. Isaac-Lam.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaac-Lam, M.F., DeMichael, K.M. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med 100, 1095–1109 (2022). https://doi.org/10.1007/s00109-022-02226-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02226-y

Keywords

Navigation