Skip to main content

Advertisement

Log in

A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014–2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55(6):2005–2023. https://doi.org/10.1002/hep.25762

    Article  PubMed  Google Scholar 

  2. Manne V, Handa P, Kowdley KV (2018) Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 22(1):23–37. https://doi.org/10.1016/j.cld.2017.08.007

    Article  PubMed  Google Scholar 

  3. Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10(11):686–690. https://doi.org/10.1038/nrgastro.2013.171

    Article  PubMed  CAS  Google Scholar 

  4. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115(5):1343–1351. https://doi.org/10.1172/JCI23621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu W, Baker RD, Bhatia T, Zhu L, Baker SS (2016) Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 73(10):1969–1987. https://doi.org/10.1007/s00018-016-2161-x

    Article  PubMed  CAS  Google Scholar 

  6. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 40(6):1387–1395. https://doi.org/10.1002/hep.20466

    Article  PubMed  Google Scholar 

  7. Ruilope LM, Nunes Filho ACB, Nadruz W, Rodríguez Rosales FF, Verdejo-Paris J (2018) Obesity and hypertension in Latin America: current perspectives. Hipertension y Riesgo Vascular 35(2):70–76. https://doi.org/10.1016/j.hipert.2017.12.004

    Article  PubMed  CAS  Google Scholar 

  8. Adeboye B, Bermano G, Rolland C (2012) Obesity and its health impact in Africa: a systematic review. Cardiovasc J Afr 23(9):512–521. https://doi.org/10.5830/CVJA-2012-040

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lemamsha H, Randhawa G, Papadopoulos C (2019) Prevalence of overweight and obesity among Libyan men and women. Biomed Res Int 2019. https://doi.org/10.1155/2019/8531360

  10. Toselli S, Gualdi-Russo E, Boulos DNK, Anwar WA, Lakhoua C, Jaouadi I, Khyatti M, Hemminki K (2014) Prevalence of overweight and obesity in adults from North Africa. European J Public Health 24(SUPPL.1), 31–39. https://doi.org/10.1093/eurpub/cku103

  11. Steyn NP, Mchiza ZJ (2014) Obesity and the nutrition transition in sub-Saharan Africa. Ann N Y Acad Sci 1311(1):88–101. https://doi.org/10.1111/nyas.12433

    Article  PubMed  CAS  Google Scholar 

  12. Van Der Merwe MT, Pepper MS (2006) Obesity in South Africa. Obes Rev 7(4):315–322. https://doi.org/10.1111/j.1467-789X.2006.00237.x

    Article  PubMed  Google Scholar 

  13. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133-2223 10.1023/A

  14. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. https://doi.org/10.1038/ng1362

    Article  PubMed  CAS  Google Scholar 

  15. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.1038/ncb2152.AMPK

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 434(March):1–6. https://doi.org/10.1038/nature03314.1

    Article  Google Scholar 

  17. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4):327–338. https://doi.org/10.1016/j.cmet.2009.02.006.Hepatocyte-specific

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447(7147):1012–1016. https://doi.org/10.1038/nature05861

    Article  PubMed  CAS  Google Scholar 

  19. Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) MTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468(7327):1100–1106. https://doi.org/10.1038/nature09584

    Article  PubMed  CAS  Google Scholar 

  20. Ghanbari M, Momen S, Aghazadeh A, Reza S, Mahmud B, Abdoli M, Dastmalchi N, Safaralizadeh R (2021) Interleukin-1 in obesity-related low-grade inflammation : From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 96(May):107765. https://doi.org/10.1016/j.intimp.2021.107765

    Article  PubMed  CAS  Google Scholar 

  21. Trayhurn P (2013) Hypoxia and adipose tissue function and overview of adipose tissue. Physiol Rev 93:1–21. https://doi.org/10.1152/physrev.00017.2012

    Article  PubMed  CAS  Google Scholar 

  22. Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8(1):75–79. https://doi.org/10.1038/nm0102-75

    Article  PubMed  CAS  Google Scholar 

  23. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15(5):423–430. https://doi.org/10.1038/ni.2865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. In Nature Reviews Molecular Cell Biology (Vol. 9, Issue 5, pp. 367–377). Nature Publishing Group. https://doi.org/10.1038/nrm2391

  25. Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A (2014) Regulation of adipocyte lipolysis. In Nutrition Res Rev 27(1). https://doi.org/10.1017/S095442241400002X

  26. You T, Yang R, Lyles MF, Gong D, Nicklas BJ, Yang R, Lyles MF, Gong D, Nicklas BJ (2004) Abdominal adipose tissue cytokine gene expression : relationship to obesity and metabolic risk factors. Am J Physiol Endocrinol Metab 288:741–747. https://doi.org/10.1152/ajpendo.00419.2004

    Article  CAS  Google Scholar 

  27. Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta 417:80–84. https://doi.org/10.1016/j.cca.2012.12.007

    Article  PubMed  CAS  Google Scholar 

  28. Yamauchi T, Kamon J, Ito Y et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(June). https://doi.org/10.1038/nature01683.1

  29. Ertl J, Gerl M, Preibisch G (1997) Leptin impairs metabolic actions of insulin in isolated rat adipocytes *. J Biol Chem 272(16):10585–10593. https://doi.org/10.1074/jbc.272.16.10585

    Article  PubMed  Google Scholar 

  30. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction *. J Biol Chem 272(2):971–976. https://doi.org/10.1074/jbc.272.2.971

    Article  PubMed  CAS  Google Scholar 

  31. Murphy AJ, Michael J, Kammoun HL, Croker BA, Febbraio MA, Masters L, Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MKS (2016) IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome article IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 23(1):155–164. https://doi.org/10.1016/j.cmet.2015.09.024

    Article  PubMed  CAS  Google Scholar 

  32. Yeh MM, Brunt EM (2014) Pathological features of fatty liver disease. Gastroenterology 147(4):754–764. https://doi.org/10.1053/j.gastro.2014.07.056

    Article  PubMed  CAS  Google Scholar 

  33. Xu X, So JS, Park JG, Lee AH (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33(4):301–311. https://doi.org/10.1055/s-0033-1358523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ortega-Prieto P, Postic C (2019) Carbohydrate sensing through the transcription factor ChREBP. Front Genetics 10:1–9. https://doi.org/10.3389/fgene.2019.00472

  35. Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? .Cell Death Dis 11(9). https://doi.org/10.1038/s41419-020-03003-w

  36. Fang YL, Chen H, Wang CL, Liang L (2018) Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model.” World J Gastroenterol 24(27):2974–2983. https://doi.org/10.3748/wjg.v24.i27.2974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical Exp 65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

  38. Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT (2020) Evolution of NAFLD and its management. Nutr Clin Pract 35(1):72–84. https://doi.org/10.1002/ncp.10449

    Article  PubMed  Google Scholar 

  39. Moore MP, Cunningham RP, Dashek RJ, Mucinski JM, Rector RS (2020) A fad too far? Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity 28(10):1843–1852. https://doi.org/10.1002/oby.22964

    Article  PubMed  CAS  Google Scholar 

  40. Aguirre L, Portillo MP, Hijona E, Bujanda L (2014) Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol 20(23):7366–7380. https://doi.org/10.3748/wjg.v20.i23.7366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 380(3):644–649. https://doi.org/10.1016/j.bbrc.2009.01.163

    Article  PubMed  CAS  Google Scholar 

  42. Chang CJ, Liou SS, Tzeng TF, Liu IM (2014) The ethanol extract of Zingiber zerumbet Smith attenuates non-alcoholic fatty liver disease in hamsters fed on high-fat diet. Food Chem Toxicol 65(20101018):33–42. https://doi.org/10.1016/j.fct.2013.11.048

    Article  PubMed  CAS  Google Scholar 

  43. Gnoni GV, Paglialonga G (2009) Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. Eur J Clin Invest 39(3):211–218. https://doi.org/10.1111/j.1365-2362.2008.02077.x

    Article  PubMed  CAS  Google Scholar 

  44. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55(8):2180–2191. https://doi.org/10.2337/db05-1188

    Article  PubMed  CAS  Google Scholar 

  45. Huang Y, Lang H, Chen K, Zhang Y, Gao Y, Ran L, Yi L, Mi M, Zhang Q (2020) Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. In Appl Physiol Nutrition Metabolism 45(3). https://doi.org/10.1139/apnm-2019-0057

  46. Li Y, Xu S, Mihaylova M, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY-J, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin resistant mice. Cell Metab 13(4):376–388. https://doi.org/10.1016/j.cmet.2011.03.009.AMPK

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dong GZ, Lee JH, Ki SH, Yang JH, Cho IJ, Kang SH, Zhao RJ, Kim SC, Kim YW (2014) AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. Eur J Pharmacol 740:634–640. https://doi.org/10.1016/j.ejphar.2014.06.017

    Article  PubMed  CAS  Google Scholar 

  48. Li L, Hai J, Li Z, Zhang Y, Peng H, Li K, Weng X (2014) Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem Toxicol 63:166–173. https://doi.org/10.1016/j.fct.2013.08.036

    Article  PubMed  CAS  Google Scholar 

  49. Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K, Li D (2016) Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem 422(1–2):75–84. https://doi.org/10.1007/s11010-016-2807-x

    Article  PubMed  CAS  Google Scholar 

  50. Ding S, Jiang J, Zhang G, Bu Y, Zhang G, Zhao X (2017) Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS ONE 12(8):1–16. https://doi.org/10.1371/journal.pone.0183541

    Article  CAS  Google Scholar 

  51. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hosseini H, Teimouri M, Shabani M, Koushki M, Babaei Khorzoughi R, Namvarjah F, Izadi P, Meshkani R (2020) Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol 119:105667. https://doi.org/10.1016/j.biocel.2019.105667

  53. Jakubczyk K, Skonieczna-żydecka K, Kałduńska J, Stachowska E, Gutowska I, Janda K (2020) Effects of resveratrol supplementation in patients with non-alcoholic fatty liver disease—A meta-analysis. Nutrients 12(8):1–15. https://doi.org/10.3390/nu12082435

    Article  CAS  Google Scholar 

  54. Elgebaly A, Radwan IAI, Aboelnas MM, Ibrahim HH, Eltoomy MFM, Atta AA, Mesalam HA, Sayed AA, Othman AA (2017) Resveratrol supplementation in patients with non-alcoholic fatty liver disease: Systematic review and meta-analysis. J Gastrointestinal Liver Dis 26(1):59–67. https://doi.org/10.15403/jgld.2014.1121.261.ely

  55. Asgary S, Karimi R, Momtaz S, Naseri R, Farzaei MH (2019) Effect of resveratrol on metabolic syndrome components: a systematic review and meta-analysis. Rev Endocr Metab Disord 20(2):173–186. https://doi.org/10.1007/s11154-019-09494-z

    Article  PubMed  CAS  Google Scholar 

  56. Faghihzadeh F, Hekmatdoost A, Adibi P (2015) Resveratrol and liver: A systematic review. Journal of Research in Medical Sciences 20(8):797–810. https://doi.org/10.4103/1735-1995.168405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tabrizi R, Tamtaji OR, Lankarani KB, Akbari M, Dadgostar E, Dabbaghmanesh MH, Kolahdooz F, Shamshirian A, Momen-Heravi M, Asemi Z (2020) The effects of resveratrol intake on weight loss: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 60(3):375–390. https://doi.org/10.1080/10408398.2018.1529654

    Article  PubMed  CAS  Google Scholar 

  58. Springer M, Moco S (2019) Resveratrol and its human metabolites—effects on metabolic health and obesity. Nutrients 11(1):1–17. https://doi.org/10.3390/nu11010143

    Article  CAS  Google Scholar 

  59. Hyrsova L, Vanduchova A, Dusek J, Smutny T, Carazo A, Maresova V, Trejtnar F, Barta P, Anzenbacher P, Dvorak Z, Pavek P (2019) Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicology Lett 300:81–91. https://doi.org/10.1016/j.toxlet.2018.10.028

  60. Basheer L, Schultz K, Guttman Y, Kerem Z (2017) In silico and in vitro inhibition of cytochrome P450 3A by synthetic stilbenoids. Food Chem 237:895–903. https://doi.org/10.1016/j.foodchem.2017.06.040

    Article  PubMed  CAS  Google Scholar 

  61. Chow HHS, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS (2010) Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res 3(9):1168–1175. https://doi.org/10.1158/1940-6207.CAPR-09-0155

    Article  CAS  Google Scholar 

  62. Chun YJ, Kim MY, Guengerich FP (1999) Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem Biophys Res Commun 262(1):20–24. https://doi.org/10.1006/bbrc.1999.1152

    Article  PubMed  CAS  Google Scholar 

  63. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8(3):1–14. https://doi.org/10.3390/nu8030167

    Article  CAS  Google Scholar 

  64. Li X, Wang R, Zhou N, Wang X, Liu Q, Bai Y, Bai Y, Liu Z, Yang H, Zou J, Wang H, Shi T (2012) Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomedical Reports 1(1):71–76. https://doi.org/10.3892/br.2012.27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Al-maamari JNS, Rahmadi M, Panggono SM (2021) The effects of quercetin on the expression of SREBP- 1c mRNA in high-fat diet-induced NAFLD in mice. J Basic Clin Physiol Pharmacol 32(4):637–644. https://doi.org/10.1515/jbcpp-2020-0423

    Article  CAS  Google Scholar 

  66. Vidyashankar S, Sandeep Varma R, Patki PS (2013) Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol In Vitro 27(2):945–953. https://doi.org/10.1016/j.tiv.2013.01.014

    Article  PubMed  CAS  Google Scholar 

  67. Gori M, Giannitelli SM, Zancla A, Mozetic P, Trombetta M, Merendino N, Rainer A (2021) Quercetin and hydroxytyrosol as modulators of hepatic steatosis: A NAFLD-on-a-chip study. Biotechnol Bioeng 118(1):142–152. https://doi.org/10.1002/bit.27557

    Article  PubMed  CAS  Google Scholar 

  68. Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X, Lu Q (2019) Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 33(12):3140–3152. https://doi.org/10.1002/ptr.6486

    Article  PubMed  CAS  Google Scholar 

  69. Kobori M, Masumoto S, Akimoto Y, Oike H (2011) Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol Nutr Food Res 55(4):530–540. https://doi.org/10.1002/mnfr.201000392

    Article  PubMed  CAS  Google Scholar 

  70. Kim CS, Kwon Y, Choe SY, Hong SM, Yoo H, Goto T, Kawada T, Choi HS, Joe Y, Chung HT, Yu R (2015) Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr Metab 12(1):1–9. https://doi.org/10.1186/s12986-015-0030-5

    Article  CAS  Google Scholar 

  71. Liu L, Gao C, Yao P, Gong Z (2015) Quercetin alleviates high-fat diet-induced oxidized low-density lipoprotein accumulation in the liver: Implication for autophagy regulation. Biomed Res Int 2015. https://doi.org/10.1155/2015/607531

  72. Jung CH, Cho I, Ahn J, Jeon TI, Ha TY (2012) Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res 27(1):139–143. https://doi.org/10.1002/ptr.4687

    Article  PubMed  CAS  Google Scholar 

  73. Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, Tang Y, Yao P (2018) Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol 114:52–60. https://doi.org/10.1016/j.fct.2018.02.019

  74. Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R (2020) The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacoth 131. https://doi.org/10.1016/j.biopha.2020.110785

  75. Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S (2017) Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radical Biol Med 102:188–202. https://doi.org/10.1016/j.freeradbiomed.2016.11.037

  76. Qin G, Ma J, Huang Q, Yin H, Han J, Li M, Deng Y, Wang B, Hassan W, Shang J (2018) Isoquercetin improves hepatic lipid accumulation by activating AMPK pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. Int J Mol Sci 19(12):1–15. https://doi.org/10.3390/ijms19124126

    Article  Google Scholar 

  77. Hosseinikia M, Oubari F, Hosseinkia R, Tabeshfar Z, Salehi MG, Mousavian Z, Abbasi M, Samadi M, Pasdar Y (2020) Quercetin supplementation in non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled clinical trial. Nutrition and Food Science 50(6):1279–1293. https://doi.org/10.1108/NFS-10-2019-0321

    Article  Google Scholar 

  78. Ou Q, Zheng Z, Zhao Y, Lin W (2020) Impact of quercetin on systemic levels of inflammation: a meta-analysis of randomised controlled human trials. Int J Food Sci Nutr 71(2):152–163. https://doi.org/10.1080/09637486.2019.1627515

    Article  PubMed  CAS  Google Scholar 

  79. Sahebkar A (2017) Effects of quercetin supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 57(4):666–676. https://doi.org/10.1080/10408398.2014.948609

    Article  PubMed  CAS  Google Scholar 

  80. Tabrizi R, Tamtaji OR, Mirhosseini N, Lankarani KB, Akbari M, Heydari ST, Dadgostar E, Asemi Z (2020) The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 60(11):1855–1868. https://doi.org/10.1080/10408398.2019.1604491

    Article  PubMed  CAS  Google Scholar 

  81. Huang H, Liao D, Dong Y, Pu R (2020) Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: A systematic review and meta-analysis. Nutr Rev 78(8):615–626. https://doi.org/10.1093/nutrit/nuz071

    Article  PubMed  Google Scholar 

  82. Guo Y, Bruno RS (2015) Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 26(3):201–210. https://doi.org/10.1016/j.jnutbio.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  83. Chen X, Yin OQP, Zuo Z, Chow MSS (2005) Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res 22(6):892–901. https://doi.org/10.1007/s11095-005-4584-1

    Article  PubMed  CAS  Google Scholar 

  84. Yi H, Peng H, Wu X, Xu X, Kuang T, Zhang J, Du L, Fan G (2021) The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxid Med Cell Longev 133:1–16. https://doi.org/10.1016/j.biopha.2020.110984

    Article  CAS  Google Scholar 

  85. Mohos V, Fliszár-Nyúl E, Ungvári O, Kuffa K, Needs PW, Kroon PA, Telbisz Á, Özvegy-Laczka C, Poór M (2020) Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome p450 enzymes, and on OATP, BCRP and MRP2 transporters. Nutrients 12(8):1–16. https://doi.org/10.3390/nu12082306

    Article  CAS  Google Scholar 

  86. Zhang Q, Zhao JJ, Xu J, Feng F, Qu W (2015) Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J Ethnopharmacol 173:48–80. https://doi.org/10.1016/j.jep.2015.06.011

    Article  PubMed  CAS  Google Scholar 

  87. Araujo LCC, Feitosa KB, Murata GM, Furigo IC, Teixeira SA, Lucena CF, Ribeiro LM, Muscará MN, Costa SKP, Donato J, Bordin S, Curi R, Carvalho CRO (2018) Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Sci Rep 8(1):1–14. https://doi.org/10.1038/s41598-018-29044-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Domingues A, Sartori A, Golim MA, Valente LMM, Da Rosa LC, Ishikawa LLW, Siani AC, Viero RM (2011) Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both? J Ethnopharmacol 137(1):635–642. https://doi.org/10.1016/j.jep.2011.06.021

    Article  PubMed  Google Scholar 

  89. Rojas-Duran R, González-Aspajo G, Ruiz-Martel C, Bourdy G, Doroteo-Ortega VH, Alban-Castillo J, Robert G, Auberger P, Deharo E (2012) Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark. J Ethnopharmacol 143(3):801–804. https://doi.org/10.1016/j.jep.2012.07.015

    Article  PubMed  CAS  Google Scholar 

  90. Montserrat-De La Paz S, De La Puerta R, Fernandez-Arche A, Quilez AM, Muriana FJG, Garcia-Gimenez MD, Bermudez B (2015) Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages. J Ethnopharmacol 170:128–135. https://doi.org/10.1016/j.jep.2015.05.002

    Article  PubMed  CAS  Google Scholar 

  91. Santa Maria A, Lopez A, Diaz MM, Albán J, Galán De Mera A, Vicente Orellana JA, Pozuelo JM (1997) Evaluation of the toxicity of Uncaria tomentosa by bioassays in vitro. J Ethnopharmacol 57(3):183–187. https://doi.org/10.1016/S0378-8741(97)00067-6

    Article  PubMed  CAS  Google Scholar 

  92. Sheng Y, Li L, Holmgren K, Pero RW (2001) DNA repair enhancement of aqueous extracts of Uncaria tomentosa in a human volunteer study. Phytomedicine 8(4):275–282

    Article  CAS  PubMed  Google Scholar 

  93. Lamm S, Sheng Y, Pero RW (2001) Persistent response to pneumococcal vaccine in individuals supplemented with a novel water soluble extract of Uncaria tomentosa, C-Med-100®. Phytomedicine 8(4):267–274. https://doi.org/10.1078/0944-7113-00046

    Article  PubMed  CAS  Google Scholar 

  94. Budzinski JW, Foster BC, Vandenhoek S, Arnason JT (2000) An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 7(4):273–282. https://doi.org/10.1016/S0944-7113(00)80044-6

    Article  PubMed  CAS  Google Scholar 

  95. Apea-Bah FB, Hanafi M, Dewi RT, Fajriah S, Darwaman A, Artanti N, Lotulung P, Ngadymang P, Minarti B (2009) Assessment of the DPPH and α-glucosidase inhibitory potential of gambier and qualitative identification of major bioactive compound. Journal of Medicinal Plants Research 3(10):736–757

    CAS  Google Scholar 

  96. Wang ZW, Wang JS, Luo J, Kong LY (2013) α-Glucosidase inhibitory triterpenoids from the stem barks of Uncaria laevigata. Fitoterapia 90:30–37. https://doi.org/10.1016/j.fitote.2013.07.005

    Article  PubMed  CAS  Google Scholar 

  97. Sandoval M, Charbonnet RM, Okuhama NN, Roberts J, Krenova K, Trentacosti AM, Miller MJS et al (2000) Cat’s claw inhibits TNFa production and scavenges free. Free Radical Biol Med 29(1):71–78

    Article  CAS  Google Scholar 

  98. Kim J, Park SY, Lee SJ, Kim Y (2010) Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1b through blocking nuclear factor jB, Akt, and mitogen-activated protein kinase activation in macrophages. J Med Food 13(5):1133–1140

    Article  PubMed  Google Scholar 

  99. Federico A, Dallio M, Loguercio C (2017) Silymarin/Silybin and chronic liver disease: a marriage of many years. Molecules 22(2). https://doi.org/10.3390/molecules22020191

  100. Lama S, Vanacore D, Diano N, Nicolucci C, Errico S, Dallio M, Federico A, Loguercio C, Stiuso P (2019) Ameliorative effect of Silybin on bisphenol A induced oxidative stress, cell proliferation and steroid hormones oxidation in HepG2 cell cultures. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-40105-8

    Article  CAS  Google Scholar 

  101. Song Z, Song M, Lee DYW, Liu Y, Deaciuc IV, McClain CJ (2007) Silymarin prevents palmitate-induced lipotoxicity in HepG2 cells: involvement of maintenance of Akt kinase activation. Basic Clin Pharmacol Toxicol 101(4):262–268. https://doi.org/10.1111/j.1742-7843.2007.00116.x.Silymarin

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hsiang CY, Lin LJ, Kao ST, Lo HY, Chou ST, Ho TY (2015) Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells. Phytomedicine 22(7–8):768–777. https://doi.org/10.1016/j.phymed.2015.05.053

    Article  PubMed  CAS  Google Scholar 

  103. Zhang B, Xu D, She L, Wang Z, Yang N, Sun R, Zhang Y, Yan C, Wei Q, Aa J, Liu B, Wang G, Xie Y (2018) Silybin inhibits NLRP3 inflammasome assembly through the NAD+/SIRT2 pathway in mice with nonalcoholic fatty liver disease. FASEB J 32(2):757–767. https://doi.org/10.1096/fj.201700602R

    Article  PubMed  CAS  Google Scholar 

  104. Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, Zhang Q (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol 17(3):714–720. https://doi.org/10.1016/j.intimp.2013.08.019

    Article  PubMed  CAS  Google Scholar 

  105. Sahin E, Bagci R, Bektur Aykanat NE, Kacar S, Sahinturk V (2020) Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J Food Biochem 44(6):1–11. https://doi.org/10.1111/jfbc.13194

    Article  CAS  Google Scholar 

  106. Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J, Wu X (2018) Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB pathway. Dig Dis Sci 63(12):3398–3408. https://doi.org/10.1007/s10620-018-5268-0

    Article  PubMed  CAS  Google Scholar 

  107. Salamone F, Galvano F, Marino A, Paternostro C, Tibullo D, Bucchieri F, Mangiameli A, Parola M, Bugianesi E, Li Volti G (2012) Silibinin improves hepatic and myocardial injury in mice with nonalcoholic steatohepatitis. Dig Liver Dis 44(4):334–342. https://doi.org/10.1016/j.dld.2011.11.010

    Article  PubMed  CAS  Google Scholar 

  108. Salamone F, Galvano F, Cappello F, Mangiameli A, Barbagallo I, Li Volti G (2012) Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 159(6):477–486. https://doi.org/10.1016/j.trsl.2011.12.003

    Article  PubMed  CAS  Google Scholar 

  109. Ni X, Wang H (2016) Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). American Journal of Translational Research 8(2):1073–1081

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Salomone F, Barbagallo I, Godos J, Lembo V, Currenti W, Cinà D, Avola R, D’Orazio N, Morisco F, Galvano F, Li Volti G (2017) Silibinin restores NAD+ levels and induces the SIRT1/AMPK pathway in non-alcoholic fatty liver. Nutrients 9(10). https://doi.org/10.3390/nu9101086

  111. Sun R, Xu D, Wei Q, Zhang B, Aa J, Wang G, Xie Y (2020) Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model. Biomed Pharmacoth 123:109721. https://doi.org/10.1016/j.biopha.2019.109721

  112. Yao J, Zhi M, Gao X, Hu P, Li C, Yang X (2013) Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz J Med Biol Res 46(3):270–277. https://doi.org/10.1590/1414-431X20122551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kim M, Yang SG, Kim JM, Lee JW, Kim YS, Lee JI (2012) Silymarin suppresses hepatic stellate cell activation in a dietary rat model of non-alcoholic steatohepatitis: Analysis of isolated hepatic stellate cells. Int J Mol Med 30(3):473–479. https://doi.org/10.3892/ijmm.2012.1029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kalopitas G, Antza C, Doundoulakis I, Siargkas A, Kouroumalis E, Germanidis G, Samara M, Chourdakis M (2021) The impact of silymarin in individuals with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Nutrition 83:111092. https://doi.org/10.1016/j.nut.2020.111092

    Article  PubMed  CAS  Google Scholar 

  115. Zhong S, Fan Y, Yan Q, Fan X, Wu B, Han Y, Zhang Y, Chen Y, Zhang H, Niu J (2017) The therapeutic effect of silymarin in the treatment of nonalcoholic fatty disease: a meta-analysis (PRISMA) of randomized control trials. Medicine (United States) 96(49). https://doi.org/10.1097/MD.0000000000009061

  116. Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A (2016) Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Res 2016. https://doi.org/10.1155/2016/5147468

  117. Hadi A, Pourmasoumi M, Mohammadi H, Symonds M, Miraghajani M (2018) The effects of silymarin supplementation on metabolic status and oxidative stress in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Complement Ther Med 41(August):311–319. https://doi.org/10.1016/j.ctim.2018.08.010

    Article  PubMed  Google Scholar 

  118. Xiao F, Gao F, Zhou S, Wang L (2020) The therapeutic effects of silymarin for patients with glucose/lipid metabolic dysfunction: A meta-analysis. Medicine 99(40):e22249. https://doi.org/10.1097/MD.0000000000022249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Di Costanzo A, Angelico R (2019) Formulation strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules 24(11):1–29. https://doi.org/10.3390/molecules24112155

    Article  CAS  Google Scholar 

  120. Soleimani V, Delghandi PS, Moallem SA, Karimi G (2019) Safety and toxicity of silymarin, the major constituent of milk thistle extract: an updated review. Phytother Res 33(6):1627–1638. https://doi.org/10.1002/ptr.6361

    Article  PubMed  CAS  Google Scholar 

  121. Hutchinson C, Bomford A, Geissler CA (2010) The iron-chelating potential of silybin in patients with hereditary haemochromatosis. Eur J Clin Nutr 64(10):1239–1241. https://doi.org/10.1038/ejcn.2010.136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wei T, Xiong FF, Wang SD, Wang K, Zhang YY, Zhang QH (2014) Flavonoid ingredients of Ginkgo biloba leaf extract regulate lipid metabolism through Sp1-mediated carnitine palmitoyltranferase 1A up-regulation. J Biomed Sci 21(1):1–11. https://doi.org/10.1186/s12929-014-0087-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang SD, Xie ZQ, Chen J, Wang K, Wei T, Zhao AH, Zhang QH (2012) Inhibitory effect of ginkgo biloba extract on fatty liver: Regulation of carnitine palmitoyltransferase 1a and fatty acid metabolism. J Dig Dis 13(10):525–535. https://doi.org/10.1111/j.1751-2980.2012.00627.x

    Article  PubMed  CAS  Google Scholar 

  124. Li L, Yang L, Yang F, Zhao XL, Xue S, Gong FH (2021) Ginkgo biloba extract 50 (Gbe50) ameliorates insulin resistance, hepatic steatosis and liver injury in high fat diet-fed mice. J Inflamm Res 14:1959–1971. https://doi.org/10.2147/JIR.S302934

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yan Z, Fan R, Yin S, Zhao X, Liu J, Li L, Zhang W, Ge L (2015) Protective effects of Ginkgo biloba leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms. Int J Biol Macromol 80:573–580. https://doi.org/10.1016/j.ijbiomac.2015.05.054

    Article  PubMed  CAS  Google Scholar 

  126. Jeong HS, Kim KH, Lee IS, Park JY, Kim Y, Kim KS, Jang HJ (2017) Ginkgolide A ameliorates non-alcoholic fatty liver diseases on high fat diet mice. Biomed Pharmacother 88:625–634. https://doi.org/10.1016/j.biopha.2017.01.114

    Article  PubMed  CAS  Google Scholar 

  127. Yang Y, Chen J, Gao Q, Shan X, Wang J, Lv Z (2020) Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 445(July):152599. https://doi.org/10.1016/j.tox.2020.152599

    Article  PubMed  CAS  Google Scholar 

  128. Wanwimolruk S, Prachayasittikul V (2014) Cytochrome P450 enzyme mediated herbal drug interactions (part 1). EXCLI J 13:347–391. https://doi.org/10.17877/DE290R-15628

  129. Bone KM (2008) Potential interaction of Ginkgo biloba leaf with antiplatelet or anticoagulant drugs: What is the evidence? Mol Nutr Food Res 52(7):764–771. https://doi.org/10.1002/mnfr.200700098

    Article  PubMed  CAS  Google Scholar 

  130. Vaes LPJ, Chyka PA (2000) Interactions of warfarin with garlic, ginger, ginkgo, or ginseng: Nature of the evidence. Ann Pharmacother 34(12):1478–1482. https://doi.org/10.1345/aph.10031

    Article  PubMed  CAS  Google Scholar 

  131. Kahraman C, Arituluk ZC, Cankaya IIT (2020) The clinical importance of herb-drug interactions and toxicological risks of plants and herbal products. In Med Toxicol. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

  132. Lüde S, Vecchio S, S S-T, A D, H M, S V, B J, D M, L VGF, K H, E DSN, C DL, P R, H K, A C (2016) Adverse effects of plant food supplements and plants consumed as food: results from the Poisons Centres-Based PlantLIBRA Study. Phytotherapy Res 30(6):988–996. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L608880617%0Ahttp://dx.doi.org/https://doi.org/10.1002/ptr.5604

  133. Li YY, Lu XY, Sun JL, Wang QQ, Zhang YD, Zhang JB, Fan XH (2019) Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 17(9):672–681. https://doi.org/10.1016/S1875-5364(19)30081-0

    Article  PubMed  Google Scholar 

  134. Park M, Yoo JH, Lee YS, Park EJ, Lee HJ (2020) Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid–induced HepG2 cells and high-fat/high-fructose diet-fed mice. J Ginseng Res 44(2):350–361. https://doi.org/10.1016/j.jgr.2019.09.004

    Article  PubMed  Google Scholar 

  135. Huang Q, Wang T, Yang L, Wang HY (2017) Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of sirt1 and activation of AMPK. Int J Mol Sci 18(5):1–15. https://doi.org/10.3390/ijms18051063

    Article  CAS  Google Scholar 

  136. Chen XJ, Liu WJ, Wen ML, Liang H, Wu SM, Zhu YZ, Zhao JY, Dong XQ, Li MG, Bian L, Zou CG, Ma LQ (2017) Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 7:1–11. https://doi.org/10.1038/srep41144

    Article  CAS  Google Scholar 

  137. Wang F, Park JS, Ma Y, Ma H, Lee YJ, Lee GR, Yoo HS, Roh YS, Hong JT (2021) Ginseng saponin enriched in rh1 and rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome activation. Nutrients 13(3):1–17. https://doi.org/10.3390/nu13030856

    Article  CAS  Google Scholar 

  138. MIRANDA-HENRIQUES, M. S. de, DINIZ, M. de F. F. de M., & ARAÚJO, M. S. T. de. (2014) GINSENG, GREEN TEA OR FIBRATE: valid options for nonalcoholic steatohepatitis prevention? Arq Gastroenterol 51(3):255–260. https://doi.org/10.1590/s0004-28032014000300016

    Article  Google Scholar 

  139. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, Baik SK, Kim DJ, Lee GJ, Lee S, kyu, Park, S. H., & Ryu, O. H. (2013) Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol 55:586–591. https://doi.org/10.1016/j.fct.2013.01.022

    Article  PubMed  CAS  Google Scholar 

  140. Jeong H, Kim JW, Yang MS, Park C, Kim JH, Lim CW, Kim B (2018) Beneficial effects of Korean red ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chin Med 46(7):1581–1607. https://doi.org/10.1142/S0192415X18500817

    Article  CAS  Google Scholar 

  141. Choi SY, Park JS, Shon CH, Lee CY, Ryu JM, Son DJ, Hwang BY, Yoo HS, Cho YC, Lee J, Kim JW, Roh YS (2019) Fermented Korean red ginseng extract enriched in Rd and Rg3 protects against non-alcoholic fatty liver disease through regulation of mTORC1. Nutrients 11(12):1–17. https://doi.org/10.3390/nu11122963

    Article  Google Scholar 

  142. Liang W, Zhou K, Jian P, Chang Z, Zhang Q, Liu Y, Xiao S, Zhang L (2021) Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis. Front Pharmacol 12(February):1–14. https://doi.org/10.3389/fphar.2021.622841

    Article  CAS  Google Scholar 

  143. Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y (2021) Gut-liver axis modulation of Panax notoginseng saponins in nonalcoholic fatty liver disease. Hep Intl 15(2):350–365. https://doi.org/10.1007/s12072-021-10138-1

    Article  Google Scholar 

  144. Gu D, Yi H, Jiang K, Fakhar SH, Shi J, He Y, Liu B, Guo Y, Fan X, Li S (2021) Transcriptome analysis reveals the efficacy of ginsenoside-Rg1 in the treatment of nonalcoholic fatty liver disease. Life Sci 267:118986. https://doi.org/10.1016/j.lfs.2020.118986

  145. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W (2018) Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 41(11):1638–1644. https://doi.org/10.1248/bpb.b18-00132

    Article  PubMed  CAS  Google Scholar 

  146. Lee SB, Cho HI, Jin YW, Lee EK, Ahn JY, Lee SM (2016) Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice. J Pharm Pharmacol 68(1):119–127. https://doi.org/10.1111/jphp.12487

    Article  PubMed  CAS  Google Scholar 

  147. Hong JT, Lee MJ, Yoon SJ, Shin SP, Bang CS, Baik GH, Kim DJ, Youn GS, Shin MJ, Ham YL, Suk KT, Kim BS (2021) Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function. J Ginseng Res 45(2):316–324. https://doi.org/10.1016/j.jgr.2020.07.004

    Article  PubMed  Google Scholar 

  148. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ (2016) Anti-inflammatory and antifatigue effect of Korean red ginseng in patients with nonalcoholic fatty liver diseaseq. J Ginseng Res 40(3):203–210. https://doi.org/10.1016/j.jgr.2015.07.006

    Article  PubMed  Google Scholar 

  149. Shishtar E, Sievenpiper JL, Djedovic V, Cozma AI, Ha V, Jayalath VH, Jenkins DJA, Meija SB, De Souza RJ, Jovanovski E, Vuksan V (2014) The effect of ginseng (The Genus Panax) on glycemic control: A systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9(9). https://doi.org/10.1371/journal.pone.0107391

  150. Ziaei R, Ghavami A, Ghaedi E, Hadi A, Javadian P, Clark CCT (2020) The efficacy of ginseng supplementation on plasma lipid concentration in adults: a systematic review and meta-analysis. Complementary Ther Med 48:102239. https://doi.org/10.1016/j.ctim.2019.102239

  151. Ghavami A, Ziaei R, Foshati S, Hojati Kermani MA, Zare M, Amani R (2020) Benefits and harms of ginseng supplementation on liver function? A systematic review and meta-analysis. Complementary Therapies in Clinical Prac 39:101173. https://doi.org/10.1016/j.ctcp.2020.101173

  152. Hernández-García D, Granado-Serrano AB, Martín-Gari M, Naudí A, Serrano JC (2019) Efficacy of Panax ginseng supplementation on blood lipid profile. A meta-analysis and systematic review of clinical randomized trials. J Ethnopharmacol 243:112090. https://doi.org/10.1016/j.jep.2019.112090

  153. Malati CY, Pharm D, Robertson SM, Pharm D, Hunt JD, Chairez C, Alfaro RM, Kovacs JA, Penzak SR, Pharm D (2012) Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P- glycoprotein (Pgp) Activity in Healthy Subjects. J Clin Pharmacol 52(6):1–13. https://doi.org/10.1177/0091270011407194.Influence

    Article  Google Scholar 

  154. Yang L, Wang Y, Xu H, Huang G, Zhang Z, Ma Z, Gao Y (2019) Panax ginseng inhibits metabolism of diester alkaloids by downregulating CYP3A4 enzyme activity via the Pregnane X receptor. Evidence-Based Complementary and Alternative Medicine 2019. https://doi.org/10.1155/2019/3508658

  155. Kim MG, Kim Y, Jeon JY, Kim DS (2016) Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br J Clin Pharmacol 82(6):1580–1590. https://doi.org/10.1111/bcp.13080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lynch N, Berry D (2007) Differences in perceived risks and benefits of herbal, over-the-counter conventional, and prescribed conventional, medicines, and the implications of this for the safe and effective use of herbal products. Complement Ther Med 15(2):84–91. https://doi.org/10.1016/j.ctim.2006.06.007

    Article  PubMed  Google Scholar 

  157. Daston L (2014) The naturalistic fallacy is modern. Isis; an International Review Devoted to the History of Science and Its Cultural Influences 105(3):579–587. https://doi.org/10.1086/678173

    Article  PubMed  Google Scholar 

  158. Walker R (2004) Criteria for risk assessment of botanical food supplements. Toxicol Lett 149(1–3):187–195. https://doi.org/10.1016/j.toxlet.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  159. Chan TYK, Critchley, julian A. J. H. (1996) Usage and adverse effects of Chinese herbal medicines. Hum Exp Toxicol 15(1):5–12. https://doi.org/10.1177/096032719601500102

    Article  PubMed  CAS  Google Scholar 

  160. Cravotto G, Boffa L, Genzini L, Garella D (2010) Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther 35(1):11–48. https://doi.org/10.1111/j.1365-2710.2009.01096.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Brazilian research agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – 2019/20464-8), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – 308093/2019-4, and CNPq – 141743/2019-0).

Author information

Authors and Affiliations

Authors

Contributions

TMM and SLM wrote the main text, CROC suggested the idea and helped with the text, and TMM designed the figures. All authors have edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Carla R. O. Carvalho.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1465 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Moinho, T.M., Matos, S.L. & Carvalho, C.R.O. A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants?. J Mol Med 100, 411–425 (2022). https://doi.org/10.1007/s00109-021-02170-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02170-3

Keywords

Navigation