Skip to main content
Log in

AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

One of the key events in cancer development is the ability of tumor cells to overcome nutrient deprivation and hypoxia. Among proteins performing metabolic adaptation to the various cellular nutrient conditions, liver kinase B 1 (LKB1) and its main downstream target adenosine monophosphate (AMP)-activated protein kinase α (AMPKα) are important sensors of energy requirements within the cell. Although LKB1 was originally described as a tumor suppressor, given its role in metabolism, it potentially acts as a double-edged sword. AMPKα, a master regulator of cell energy demands, is activated when ATP level drops under a certain threshold, responding accordingly through its downstream targets. Twelve downstream kinase targets of LKB1 have been described as AMPKα-like proteins. This group is comprised of novel (nua) kinase family (NUAK) kinases (NUAK1 and 2) linked to cell cycle progression and ultraviolet (UV)-damage; microtubule affinity regulating kinases (MARKs) (MARK1, MARK2, MARK3, and MARK4) that are involved in cell polarity; salt inducible kinases (SIK) (SIK1, SIK2, also known as Qin-induced kinase or QIK and SIK3) that are implicated in cell metabolism and adipose tissue development and mitotic regulation; maternal embryonic leuzine zipper kinase (MELK) that regulate oocyte maturation; and finally brain selective kinases (BRSKs) (BRSK1 and 2), which have been mainly characterized in the brain due to their role in neuronal polarization. Thus, many efforts have been made in order to harness LKB1 kinase and its downstream targets as a possible therapeutic hub in tumor development and propagation. In this review, we describe LKB1 and its downstream target AMPK summarize major functions of various AMPK-like proteins, while focusing on biological functions of BRSK1 and 2 in different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jenne DE, Back W (1998) Jenne DE , Reimann H , Nezu J , Friedel W , Loff S , Jeschke R , Muller O , Back W , Zimmer MPeutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18. https://doi.org/10.1038/ng0198-38

  2. Baas AF, Boudeau J, Sapkota GP (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. 22:

  3. Boudeau J, Scott JW, Resta N et al (2004) Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci 117:6365–6375

    Article  CAS  PubMed  Google Scholar 

  4. Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628–27635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng CX (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. https://doi.org/10.1146/annurev.biochem.75.103004.142702

  7. Sanchez-Cespedes M, Parrella P, Esteller M et al (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662

    CAS  PubMed  Google Scholar 

  8. Ji H, Ramsey MR, Hayes DN et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810

    Article  CAS  PubMed  Google Scholar 

  9. Wingo SN, Gallardo TD, Akbay EA et al (2009) Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4. https://doi.org/10.1371/journal.pone.0005137

  10. Contreras CM, Gurumurthy S, Haynie JM et al (2008) Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68:759–766

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Cespedes M (2007) A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene

  12. Fernandez P, Carretero J, Medina PP et al (2004) Distinctive gene expression of human lung adenocarcinomas carrying LKB1 mutations. Oncogene. https://doi.org/10.1038/sj.onc.1207665

  13. Vaahtomeri K, Mäkelä TP (2011) Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 585:944–951

    Article  CAS  PubMed  Google Scholar 

  14. Gao B, Sun Y, Zhang J et al (2010) Spectrum of LKB1, EGFR, and KRAS mutations in Chinese lung adenocarcinomas. J Thorac Oncol. https://doi.org/10.1097/JTO.0b013e3181e05016

  15. Forcet C, Etienne-Manneville S, Gaude H et al (2005) Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet 14:1283–1292

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto S, Iwakawa R, Takahashi K et al (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene. https://doi.org/10.1038/sj.onc.1210418

  17. Hearle N, Schumacher V, Menko FH et al (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-06-0083

  18. Katajisto P, Vallenius T, Vaahtomeri K et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim. Biophys. Acta - Rev. Cancer

  19. Hardie DG, Ross FA, Hawley SA (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawley SA, Boudeau J, Reid JL, et al (2003) Complexes between the LKB1 tumor suppressor, STRADα-β and MO25α-β are upstream kinases in the AMP-a. 1–16

  21. Woods A, Johnstone SR, Dickerson K et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  22. Hardie DG (2016) Europe PMC Funders Group Molecular Pathways : Is AMPK a friend or a foe in cancer ? 21:3836–3840. https://doi.org/10.1158/1078-0432.CCR-14-3300.Molecular

  23. Monteverde T, Muthalagu N, Port J, Murphy DJ (2015) Evidence of cancer-promoting roles for AMPK and related kinases. FEBS J 282:4658–4671

    Article  CAS  PubMed  Google Scholar 

  24. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  25. Woods A, Dickerson K, Heath R et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  26. Hurley RL, Anderson KA, Franzone JM et al (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    Article  CAS  PubMed  Google Scholar 

  27. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. https://doi.org/10.1016/j.molcel.2008.03.003

  28. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell

  29. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell. https://doi.org/10.1016/S0092-8674(03)00929-2

  30. Corradetti MN, Inoki K, Bardeesy N et al (2004) Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. https://doi.org/10.1101/gad.1199104

  31. Shaw RJ, Bardeesy N, Manning BD et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. https://doi.org/10.1016/j.ccr.2004.06.007

  32. Dias VJ, Eunsung Mouradian MM (2008) 基因的改变NIH public access. Bone 23:1–7

    Google Scholar 

  33. Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. https://doi.org/10.1074/jbc.C300557200

  34. Cairns SA, Shalet S, Marshall AJ, Hartog M (1977) A comparison of phenformin and metformin in the treatment of maturity onset diabetes. Diabete Metab

  35. Reihill JA, Ewart MA, Salt IP (2011) The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells. Vasc Cell 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laderoute KR, Amin K, Calaoagan JM et al (2006) 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. https://doi.org/10.1128/mcb.00166-06

  37. Jian C, Fu J, Cheng X et al (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab. https://doi.org/10.1016/j.cmet.2020.04.011

  38. Banko MR, Allen JJ, Schaffer BE et al (2011) Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol Cell. https://doi.org/10.1016/j.molcel.2011.11.005

  39. Lee JH, Koh H, Kim M et al (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature. https://doi.org/10.1038/nature05828

  40. Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0608531103

  41. Barnes K, Ingram JC, Porras OH et al (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci

  42. Jäer S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0705070104

  43. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol.

  44. Ciccarese F, Zulato E (2019) Indraccolo S (2019) LKB1/AMPK pathway and drug response in cancer: a therapeutic perspective. Oxid Med Cell Longev. https://doi.org/10.1155/2019/8730816

  45. Schaffer BE, Levin RS, Hertz NT et al (2015) Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab 22:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carr HS, Zuo Y, Oh W, Frost JA (2013) Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Mol Cell Biol. https://doi.org/10.1128/mcb.00175-13

  47. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer

  48. Ng TL, Leprivier G, Robertson MD et al (2012) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ. https://doi.org/10.1038/cdd.2011.119

  49. Kato K, Ogura T, Kishimoto A et al (2002) Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. https://doi.org/10.1038/sj.onc.1205737

  50. Pan DA, Hardie DG (2002) A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J. https://doi.org/10.1042/BJ20020703

  51. Jeon S-M, Hay N (2012) The dark face of AMPK as an essential tumor promoter. Cell Logist. https://doi.org/10.4161/cl.22651

  52. Lizcano JM, Göransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Monteverde T, Tait-Mulder J, Hedley A et al (2018) Calcium signalling links MYC to NUAK1. Oncogene 37:982–992

    Article  CAS  PubMed  Google Scholar 

  54. Esteve-Puig R, Gil R, González-Sánchez E et al (2014) A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation. PLoS Genet 10. https://doi.org/10.1371/journal.pgen.1004721

  55. Humbert N, Navaratnam N, Augert A et al (2010) Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 29:376–386

    Article  CAS  PubMed  Google Scholar 

  56. Namiki T, Tanemura A, Valencia JC et al (2011) AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma. Proc Natl Acad Sci U S A 108:6597–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goto K, Lin W, Zhang L et al (2013) The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling. J Hepatol 59:942–948

    Article  CAS  PubMed  Google Scholar 

  58. Wang C, Song D, Fu J, Wen X (2020) SIK1 regulates CRTC2-mediated gluconeogenesis signaling pathway in human and mouse liver cells. Front Endocrinol (Lausanne) 11:1–12

    Google Scholar 

  59. Stewart R, Akhmedov D, Robb C et al (2013) Regulation of SIK1 abundance and stability is critical for myogenesis. Proc Natl Acad Sci U S A 110:117–122

    Article  CAS  PubMed  Google Scholar 

  60. Horike N, Takemori H, Katoh Y et al (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447

    Article  CAS  PubMed  Google Scholar 

  61. Katoh Y, Takemori H, Horike N et al (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217:109–112

    Article  CAS  PubMed  Google Scholar 

  62. Johnson LN, Noble MEM, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell

  63. Timm T, Li XY, Biernat J et al (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22:5090–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heyer BS, Kochanowski H, Solter D (1999) Expression of Melk, a new protein kinase, during early mouse development. Dev Dyn 215:344–351

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez-Asiain A, Ruiz-Babot G, Romero W et al (2011) Brain specific kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochim Biophys Acta - Mol Cell Biol Lipids 1811:1124–1135

    Article  Google Scholar 

  66. Lu R, Niida H, Nakanishi M (2004) Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function. J Biol Chem 279:31164–31170

    Article  CAS  PubMed  Google Scholar 

  67. Saiyin H, Na N, Han X et al (2017) BRSK2 induced by nutrient deprivation promotes Akt activity in pancreatic cancer via downregulation of mTOR activity. Oncotarget 8:44669–44681 https://doi.org/10.18632/oncotarget.17965

    Article  PubMed  PubMed Central  Google Scholar 

  68. Choi YJ, Di Nardo A, Kramvis I et al (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev. https://doi.org/10.1101/gad.1685008

  69. Karuman P, Gozani O, Odze RD et al (2001) The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319

    Article  CAS  PubMed  Google Scholar 

  70. Hou X, Liu JE, Liu W et al (2011) A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation. Oncogene 30:2933–2942

    Article  CAS  PubMed  Google Scholar 

  71. Zeng PY, Berger SL (2006) LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res 66:10701–10708

    Article  CAS  PubMed  Google Scholar 

  72. Feldman JD, Vician L, Crispino M et al (2000) The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem 74:2227–2238

    Article  CAS  PubMed  Google Scholar 

  73. Crump JG, Zhen M, Jin Y, Bargmann CI (2001) The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29:115–129

    Article  CAS  PubMed  Google Scholar 

  74. Kishi M, Pan YA, Crump JG, Sanes JR (2005) Mammalian SAD kinases are required for neuronal polarization. Science (80- ) 307:929–932. https://doi.org/10.1126/science.1107403

  75. Alvarado-Kristensson M, Rodríguez MJ, Silió V et al (2009) SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat Cell Biol 11:1081–1092

    Article  CAS  PubMed  Google Scholar 

  76. Barnes AP, Lilley BN, Pan YA et al (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129:549–563

    Article  CAS  PubMed  Google Scholar 

  77. Wang H, Liu XB, Chen JH et al (2014) Decreased expression and prognostic role of cytoplasmic BRSK1 in human breast carcinoma: correlation with Jab1 stability and PI3K/Akt pathway. Exp Mol Pathol. https://doi.org/10.1016/j.yexmp.2014.07.012

  78. Bright NJ, Carling D, Thornton C (2008) Investigating the regulation of brain-specific kinases 1 and 2 by phosphorylation. J Biol Chem 283:14946–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen XY, Gu XT, Saiyin H et al (2012) Brain-selective kinase 2 (BRSK2) phosphorylation on PCTAIRE1 negatively regulates glucose-stimulated insulin secretion in pancreatic β-cells. J Biol Chem 287:30368–30375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qin Y, Sun M, You L et al (2012) ESR1, HK3 and BRSK1 gene variants are associated with both age at natural menopause and premature ovarian failure. Orphanet J Rare Dis 7:3–8

    Article  Google Scholar 

  81. Nie J, Sun C, Faruque O et al (2012) Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-cells. J Biol Chem. https://doi.org/10.1074/jbc.M112.378372

  82. Jaleel M, Villa F, Deak M et al (2006) The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J 394:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sapkota GP, Kieloch A, Lizcano JM et al (2001) Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent protein kinase, but not its farnesylation at Cys433, is essential for LKB1 to suppress cell growth. J Biol Chem 276:19469–19482

    Article  CAS  PubMed  Google Scholar 

  84. Guo Z, Tang W, Yuan J et al (2006) BRSK2 is activated by cyclic AMP-dependent protein kinase A through phosphorylation at Thr260. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2006.06.178

  85. Shelly M, Cancedda L, Heilshorn S et al (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell. https://doi.org/10.1016/j.cell.2007.04.012

  86. Müller M, Lutter D, Püschel AW (2010) Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity. J Cell Sci 123:286–294

    Article  PubMed  Google Scholar 

  87. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci.

  88. Carr AM (1997) Control of cell cycle arrest by the Mec1(sc)/Rad3(sp) DNA structure checkpoint pathway. Curr Opin Genet Dev 7:93–98

    Article  CAS  PubMed  Google Scholar 

  89. Walworth N, Davey S, Beach D (1993) Fission yeast chkl protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371

    Article  CAS  PubMed  Google Scholar 

  90. Nature LTO (1995) LETTERS TO NATURE mitosis in S phase. 374:817–819

  91. Hinchcliffe EH, Sluder G (2001) “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev.

  92. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer

  93. Stearns T (2001) Centrosome duplication: a centriolar pas de deux. Cell 105:417–420

    Article  CAS  PubMed  Google Scholar 

  94. Oakley BR (1992) γ-Tubulin: the microtubule organizer? Trends Cell Biol 2:1–5

    Article  CAS  PubMed  Google Scholar 

  95. Alvarado-Kristensson M (2018) Γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduct Target Ther 3:1–6 (https://www.ncbi.nlm.nih.gov/)

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by 2016 and 2020 Marsha Rivkin Ovarian Cancer Foundation Pilot grants

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IIana Chefetz.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 953  kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, E., Hong, L. & Chefetz, I. AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J Mol Med 99, 651–662 (2021). https://doi.org/10.1007/s00109-021-02040-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02040-y

Keywords

Navigation