Skip to main content
Log in

Cardiac-specific knockout and pharmacological inhibition of Endothelin receptor type B lead to cardiac resistance to extreme hypoxia

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Oxygen plays a central role in cardiac energy metabolism. At high altitude where the ambient oxygen level is low, we found EDNRB is associated with human hypoxia adaptation. Our subsequent study in global heterozygous knockout mice (Ednrb−/+) revealed that cardiac function was conserved in these mice when exposed to extreme hypoxia. The major goal of this study was (i) to determine the functional role of cardiomyocyte EdnrB in maintaining cardiac function under hypoxic stress and (ii) to validate the phenotypes we detected in Ednrb−/+ mice using EDNRB blockers. Unlike the global knockouts, cardiac-specific heterozygote (EdnrBflox/+) and homozygote (EdnrBflox/flox) EdnrB knockout mice were phenotypically normal. When treated with graded low levels of oxygen (10% and 5% O2), both EdnrBflox/+ and EdnrBflox/flox were hypoxia tolerant. The cardiac indexes at 10% and 5% O2 for EdnrBflox/+ were significantly higher and lactate levels were significantly lower when compared to the cre-negative controls (P < 0.05). Simultaneously, mice treated with BQ-788 (EDNRB-specific blocker) had a significantly higher cardiac index (P < 0.005) and significantly lower lactate levels (P < 0.0001) than in control mice. A similar result was obtained with mice treated with Bosentan (non-specific). These data indicate that a lower level or complete lack of EdnrB in the cardiomyocytes significantly improves cardiac performance under extreme hypoxia, a novel role of cardiomyocyte EdnrB in the regulation of cardiac function. Furthermore, this rescue under extreme hypoxia can also be achieved using EDNRB-specific pharmacological agents, e.g., BQ-788. This systematically confirms, both genetically and pharmacologically, the protective role of a lower EDNRB under extreme hypoxia stress.

Key messages

  • Under normal condition, cardiomyocytes-specific EdnrB knockout mice, both heterozygote and homozygote, are phenotypically normal.

  • Under hypoxic condition, a lower level or complete deletion of cardiomyocyte EdnrB conserves cardiac function by maintaining high cardiac index.

  • Similarly, mice treated with both specific (BQ-788) and non-specific (Bosentan) EDNRB blockers are tolerant to hypoxia by maintaining better cardiac function.

  • The oxygen perfusion under extreme hypoxia is better in the mice with lower EDNRB, as depicted by lower lactate level at 5% oxygen.

  • Our current study systematically confirms, both genetically and pharmacologically, the protective role of a lower EDNRB under extreme hypoxia stress.

  • Overall, it supports our hypothesis that studies on human hypoxia adaptation provide new insight to common disease pathogenesis and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Udpa N, Ronen R, Zhou D, Liang J, Stobdan T, Appenzeller O, Yin Y, du Y, Guo L, Cao R et al (2014) Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol 15(2):R36

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou D, Udpa N, Ronen R, Stobdan T, Liang J, Appenzeller O, Zhao HW, Yin Y, Du Y, Guo L et al (2013) Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am J Hum Genet 93(3):452–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stobdan T, Zhou D, Ao-Ieong E, Ortiz D, Ronen R, Hartley I, Gan Z, McCulloch AD, Bafna V, Cabrales P et al (2015) Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice. Proc Natl Acad Sci U S A 112(33):10425–10430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52(6):456–466

    Article  PubMed  Google Scholar 

  5. Goerre S, Wenk M, Bartsch P, Luscher TF, Niroomand F, Hohenhaus E, Oelz O, Reinhart WH (1995) Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation 91(2):359–364

    Article  PubMed  CAS  Google Scholar 

  6. Kojonazarov B, Isakova J, Imanov B, Sovkhozova N, Sooronbaev T, Ishizaki T, Aldashev AA (2012) Bosentan reduces pulmonary artery pressure in high altitude residents. High Alt Med Biol 13(3):217–223

    Article  PubMed  CAS  Google Scholar 

  7. Kuc RE, Maguire JJ, Davenport AP (2006) Quantification of endothelin receptor subtypes in peripheral tissues reveals downregulation of ET(A) receptors in ET(B)-deficient mice. Exp Biol Med (Maywood) 231(6):741–745

    CAS  Google Scholar 

  8. Kedzierski RM, Grayburn PA, Kisanuki YY, Williams CS, Hammer RE, Richardson JA, Schneider MD, Yanagisawa M (2003) Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin II and isoproterenol. Mol Cell Biol 23(22):8226–8232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Krejci V, Hiltebrand LB, Erni D, Sigurdsson GH (2003) Endothelin receptor antagonist bosentan improves microcirculatory blood flow in splanchnic organs in septic shock. Crit Care Med 31(1):203–210

    Article  PubMed  CAS  Google Scholar 

  10. Wanecek M, Weitzberg E, Alving K, Rudehill A, Oldner A (2001) Effects of the endothelin receptor antagonist bosentan on cardiac performance during porcine endotoxin shock. Acta Anaesthesiol Scand 45(10):1262–1270

    Article  PubMed  CAS  Google Scholar 

  11. Bagnall AJ, Kelland NF, Gulliver-Sloan F, Davenport AP, Gray GA, Yanagisawa M, Webb DJ, Kotelevtsev YV (2006) Deletion of endothelial cell endothelin B receptors does not affect blood pressure or sensitivity to salt. Hypertension 48(2):286–293

    Article  PubMed  CAS  Google Scholar 

  12. Druckenbrod NR, Powers PA, Bartley CR, Walker JW, Epstein ML (2008) Targeting of endothelin receptor-B to the neural crest. Genesis 46(8):396–400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cabrales P, Acero C, Intaglietta M, Tsai AG (2003) Measurement of the cardiac output in small animals by thermodilution. Microvasc Res 66(2):77–82

    Article  PubMed  Google Scholar 

  14. Dimitrijevic I, Edvinsson ML, Chen Q, Malmsjo M, Kimblad PO, Edvinsson L (2009) Increased expression of vascular endothelin type B and angiotensin type 1 receptors in patients with ischemic heart disease. BMC Cardiovasc Disord 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dagassan PH, Breu V, Clozel M, Kunzli A, Vogt P, Turina M et al (1996) Up-regulation of endothelin-B receptors in atherosclerotic human coronary arteries. J Cardiovasc Pharmacol 27(1):147–153

    Article  PubMed  CAS  Google Scholar 

  16. Tykocki NR, Watts SW (2010) The interdependence of endothelin-1 and calcium: a review. Clin Sci (Lond) 119(9):361–372

    Article  CAS  Google Scholar 

  17. Schneider MP, Boesen EI, Pollock DM (2007) Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47:731–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee HO, Levorse JM, Shin MK (2003) The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 259(1):162–175

    Article  PubMed  CAS  Google Scholar 

  19. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79(7):1267–1276

    Article  PubMed  CAS  Google Scholar 

  20. Gariepy CE, Williams SC, Richardson JA, Hammer RE, Yanagisawa M (1998) Transgenic expression of the endothelin-B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease. J Clin Invest. 102(6):1092–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ge Y, Bagnall A, Stricklett PK, Strait K, Webb DJ, Kotelevtsev Y, Kohan DE (2006) Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention. Am J Physiol Renal Physiol 291(6):F1274–F1280

    Article  PubMed  CAS  Google Scholar 

  22. Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA et al (2010) Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 88(6):644–651

    Article  PubMed  CAS  Google Scholar 

  23. Fukuroda T, Fujikawa T, Ozaki S, Ishikawa K, Yano M, Nishikibe M (1994) Clearance of circulating endothelin-1 by ETB receptors in rats. Biochem Biophys Res Commun 199(3):1461–1465

    Article  PubMed  CAS  Google Scholar 

  24. Miller E, Czopek A, Duthie KM, Kirkby NS, van de Putte EE, Christen S et al (2017) Smooth muscle endothelin B receptors regulate blood pressure but not vascular function or neointimal remodeling. Hypertension. 69(2):275–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhao XS, Pan W, Bekeredjian R, Shohet RV (2006) Endogenous endothelin-1 is required for cardiomyocyte survival in vivo. Circulation 114(8):830–837

    Article  PubMed  CAS  Google Scholar 

  26. Merlen C, Farhat N, Luo X, Chatenet D, Tadevosyan A, Villeneuve LR, Gillis MA, Nattel S, Thorin E, Fournier A (2013) et al. Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca(2)(+) in adult cardiac myocytes. J Mol Cell Cardiol 62:189–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jules F, Avedanian L, Al-Khoury J, Keita R, Normand A, Bkaily G et al (2015) Nuclear membranes ETB receptors mediate ET-1-induced increase of nuclear calcium in human left ventricular endocardial endothelial cells. J Cardiovasc Pharmacol 66(1):50–57

    Article  PubMed  CAS  Google Scholar 

  28. Pham I, Wuerzner G, Richalet JP, Peyrard S, Azizi M (2010) Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. Eur J Clin Investig 40(3):195–202

    Article  CAS  Google Scholar 

  29. Radiloff DR, Zhao Y, Boico A, Wu C, Shan S, Palmer G et al (2012) The combination of theophylline and endothelin receptor antagonism improves exercise performance of rats under simulated high altitude. J Appl Physiol (1985) 113(8):1243–1252

    Article  CAS  Google Scholar 

  30. Schroeder T, Piantadosi CA, Natoli MJ, Autmizguine J, Cohen-Wolkowieczs M, Hamilton KL et al (2018) Safety and ergogenic properties of combined aminophylline and ambrisentan in hypoxia. Clin Pharmacol Ther. 103(5):888–898

    Article  PubMed  CAS  Google Scholar 

  31. Naeije R, Huez S, Lamotte M, Retailleau K, Neupane S, Abramowicz D, Faoro V (2010) Pulmonary artery pressure limits exercise capacity at high altitude. Eur Respir J 36(5):1049–1055

    Article  PubMed  CAS  Google Scholar 

  32. Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A 99(26):17215–17218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wu S, Hao G, Zhang S, Jiang D, Wuren T, Luo J (2016) Cerebral vasoconstriction reactions and plasma levels of ETBR, ET-1, and eNOS in patients with chronic high altitude disease. Mol Med Rep. 14(3):2497–2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Georgiadis D, Sievert M, Cencetti S, Uhlmann F, Krivokuca M, Zierz S, Werdan K (2000) Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J 21(5):407–413

    Article  PubMed  CAS  Google Scholar 

  35. Foller M, Mahmud H, Qadri SM, Gu S, Braun M, Bobbala D et al (2010) Endothelin B receptor stimulation inhibits suicidal erythrocyte death. FASEB J 24(9):3351–3359

    Article  PubMed  CAS  Google Scholar 

  36. Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, Doi T (2016) Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 537(7620):363–368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Donald Kohan (Univ. of Utah) and Dr. David Webb (Univ. Of Edinburgh) for providing the EdnrB-LoxP mice.

Sources of funding

This work was supported by National Institutes of Health (NIH) grant (R01 HL127403-02) to GGH. TS was supported by the Emerald Foundation Inc. This work was partially supported by NIH grants from the Heart Lung and Blood Institute (P01-HL110900, R01-HL126945, and T32-HL007444) PC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel G. Haddad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig S1

Cardiac output comparison between cardiac-specific EdnrB homozygous (EdnrBflox/flox), heterozygous (EdnrBflox/+) and controls mice. EdnrBflox/+ mice maintains a higher CO under hypoxia. Error bar indicates ± standard error.(PNG 73 kb)

High resolution image (TIF 481 kb)

Supplementary Fig S2

Cardiac output comparison between BQ-788, Bosentan treated and control mice. Both BQ-788 and Bosentan treated mice maintains a relative higher CO under extreme hypoxia of 10% and 5% O2. However,CO in BQ-788 treated mice was significantly higher at 5% O2 when compared to both Bosentan and control mice. Error bar indicates ± standard error.(PNG 50 kb)

High resolution image(TIF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stobdan, T., Zhou, D., Williams, A.T. et al. Cardiac-specific knockout and pharmacological inhibition of Endothelin receptor type B lead to cardiac resistance to extreme hypoxia. J Mol Med 96, 975–982 (2018). https://doi.org/10.1007/s00109-018-1673-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1673-2

Keywords

Navigation