Skip to main content
Log in

NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Fetal growth restriction (FGR) the leading cause of perinatal mortality and morbidity is highly related to abnormal placental development, and placentas from FGR pregnancies are often characterized by increased inflammation. However, the mechanisms of FGR-associated inflammation are far from being understood. NLRP7, a member of a family of receptors involved in the innate immune responses, has been shown to be associated with gestational trophoblastic diseases. Here, we characterized the expression and the functional role of NLRP7 in the placenta and investigated its involvement in the pathogenesis of FGR. We used primary trophoblasts and placental explants that were collected during early pregnancy, and established trophoblast-derived cell lines, human placental villi, and serum samples from early pregnancy (n = 38) and from FGR (n = 40) and age-matched controls (n = 32). Our results show that NLRP7 (i) is predominantly expressed in the trophoblasts during the hypoxic period of placental development and its expression is upregulated by hypoxia and (ii) increases trophoblast proliferation ([3H]-thymidine) and controls the precocious differentiation of trophoblasts towards syncytium (syncytin 1 and 2 and β-hCG production and xCELLigence analysis) and towards invasive extravillous trophoblast (2D and 3D cultures). We have also demonstrated that NLRP7 inflammasome activation in trophoblast cells increases IL-1β, but not IL-18 secretion. In relation to the FGR, we demonstrated that major components of NLRP7 inflammasome machinery are increased and that IL-1β but not IL-18 circulating levels are increased in FGR. Altogether, our results identified NLRP7 as a critical placental factor and provided evidence for its deregulation in FGR. NLRP7 inflammasome is abundantly expressed by trophoblast cells. It is regulated by a key parameter of placental development, hypoxia. It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role. NLRP7 machinery is deregulated in FGR pregnancies.

Key messages

  • NLRP7 inflammasome is abundantly expressed by trophoblast cells.

  • It is regulated by a key parameter of placental development, hypoxia.

  • It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role.

  • NLRP7 machinery is deregulated in FGR pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mwaniki MK, Atieno M, Lawn JE, Newton CR (2012) Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 379(9814):445–452

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Vliet EO, de Kieviet JF, van der Voorn JP, Been JV, Oosterlaan J, van Elburg RM (2012) Placental pathology and long-term neurodevelopment of very preterm infants. Am J Obstet Gynecol 206(6):489 e481–489 e487

    Google Scholar 

  3. Derricott H, Jones RL, Greenwood SL, Batra G, Evans MJ, Heazell AE (2016) Characterizing villitis of unknown etiology and inflammation in stillbirth. Am J Pathol 186(4):952–961

    Article  PubMed  CAS  Google Scholar 

  4. Eichenwald EC, Stark AR (2008) Management and outcomes of very low birth weight. N Engl J Med 358(16):1700–1711

    Article  PubMed  CAS  Google Scholar 

  5. Baschat AA (2004) Fetal responses to placental insufficiency: an update. BJOG 111(10):1031–1041

    Article  PubMed  CAS  Google Scholar 

  6. Pollack RN, Divon MY (1992) Intrauterine growth retardation: definition, classification, and etiology. Clin Obstet Gynecol 35(1):99–107

    Article  PubMed  CAS  Google Scholar 

  7. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC (1996) Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175(6):1534–1542

    Article  PubMed  CAS  Google Scholar 

  8. Regnault TR, Galan HL, Parker TA, Anthony RV (2002) Placental development in normal and compromised pregnancies-- a review. Placenta 23(Suppl A):S119–S129

    Article  PubMed  Google Scholar 

  9. Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D’Souza SW, Glazier JD, Greenwood SL, Jansson T, Powell T (2005) Placental phenotypes of intrauterine growth. Pediatr Res 58(5):827–832

    Article  PubMed  Google Scholar 

  10. Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH (2014) Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med 211(1):165–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T (2002) Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol 186(1):158–166

    Article  PubMed  Google Scholar 

  12. Levy R, Nelson DM (2000) To be, or not to be, that is the question. Apoptosis in human trophoblast. Placenta 21(1):1–13

    Article  PubMed  CAS  Google Scholar 

  13. Smith SC, Baker PN, Symonds EM (1997) Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol 177(6):1395–1401

    Article  PubMed  CAS  Google Scholar 

  14. Arroyo JA, Winn VD (2008) Vasculogenesis and angiogenesis in the IUGR placenta. Semin Perinatol 32(3):172–177

    Article  PubMed  Google Scholar 

  15. Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS (2003) Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 24(2–3):219–226

    Article  PubMed  CAS  Google Scholar 

  16. Nadeau-Vallee M, Chin PY, Belarbi L, Brien ME, Pundir S, Berryer MH, Beaudry-Richard A, Madaan A, Sharkey DJ, Lupien-Meilleur A, Hou X, Quiniou C, Beaulac A, Boufaied I, Boudreault A, Carbonaro A, Doan ND, Joyal JS, Lubell WD, Olson DM, Robertson SA, Girard S, Chemtob S (2017) Antenatal suppression of IL-1 protects against inflammation-induced fetal injury and improves neonatal and developmental outcomes in mice. J Immunol 198(5):2047–2062

    Article  PubMed  CAS  Google Scholar 

  17. Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71(4):444–457

    Article  PubMed  Google Scholar 

  18. Saji F, Samejima Y, Kamiura S, Sawai K, Shimoya K, Kimura T (2000) Cytokine production in chorioamnionitis. J Reprod Immunol 47(2):185–196

    Article  PubMed  CAS  Google Scholar 

  19. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5

    Article  PubMed  CAS  Google Scholar 

  20. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kim YK, Shin JS, Nahm MH (2016) NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 57(1):5–14

    Article  PubMed  CAS  Google Scholar 

  22. Kufer TA, Sansonetti PJ (2011) NLR functions beyond pathogen recognition. Nat Immunol 12(2):121–128

    Article  PubMed  CAS  Google Scholar 

  23. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gomez-Lopez N, Romero R, Xu Y, Plazyo O, Unkel R, Than NG, Chaemsaithong P, Chaiworapongsa T, Dong Z, Tarca AL, Abrahams VM, Yeo L, Hassan SS (2017) A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis. Reprod Sci 24(6):934–953

    Article  PubMed  CAS  Google Scholar 

  25. Mulla MJ, Myrtolli K, Potter J, Boeras C, Kavathas PB, Sfakianaki AK, Tadesse S, Norwitz ER, Guller S, Abrahams VM (2011) Uric acid induces trophoblast IL-1beta production via the inflammasome: implications for the pathogenesis of preeclampsia. Am J Reprod Immunol 65(6):542–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Plazyo O, Romero R, Unkel R, Balancio A, Mial TN, Xu Y, Dong Z, Hassan SS, Gomez-Lopez N (2016) HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod 95(6):130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhong Y, Kinio A, Saleh M (2013) Functions of NOD-like receptors in human diseases. Front Immunol 4:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brien ME, Duval C, Palacios J, Boufaied I, Hudon-Thibeault AA, Nadeau-Vallee M, Vaillancourt C, Sibley CP, Abrahams VM, Jones RL, Girard S (2017) Uric acid crystals induce placental inflammation and alter trophoblast function via an IL-1-dependent pathway: implications for fetal growth restriction. J Immunol 198(1):443–451

    Article  PubMed  CAS  Google Scholar 

  29. Xie F, Hu Y, Turvey SE, Magee LA, Brunham RM, Choi KC, Krajden M, Leung PC, Money DM, Patrick DM, Thomas E, von Dadelszen P (2010) Toll-like receptors 2 and 4 and the cryopyrin inflammasome in normal pregnancy and pre-eclampsia. BJOG 117(1):99–108

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen NM, Zhang L, Reddy R, Dery C, Arseneau J, Cheung A, Surti U, Hoffner L, Seoud M, Zaatari G, Bagga R, Srinivasan R, Coullin P, Ao A, Slim R (2014) Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet 51(9):623–634

    Article  PubMed  Google Scholar 

  31. Sills ES, Obregon-Tito AJ, Gao H, McWilliams TK, Gordon AT, Adams CA, Slim R (2017) Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: data from early embryo development observed during in vitro fertilization. Clin Exp Reprod Med 44(1):40–46

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brouillet S, Murthi P, Hoffmann P, Salomon A, Sergent F, De Mazancourt P, Dakouane-Giudicelli M, Dieudonne MN, Rozenberg P, Vaiman D, Barbaux S, Benharouga M, Feige JJ, Alfaidy N (2013) EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR). Cell Mol Life Sci 70(3):511–525

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann P, Feige JJ, Alfaidy N (2006) Expression and oxygen regulation of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 and its receptors in human placenta during early pregnancy. Endocrinology 147(4):1675–1684

    Article  PubMed  CAS  Google Scholar 

  34. Traboulsi W, Sergent F, Boufettal H, Brouillet S, Slim R, Hoffmann P, Benlahfid M, Zhou QY, Balboni G, Onnis V, Bolze PA, Salomon A, Sauthier P, Mallet F, Aboussaouira T, Feige JJ, Benharouga M, Alfaidy N (2017) Antagonism of EG-VEGF receptors as targeted therapy for choriocarcinoma progression in vitro and in vivo. Clin Cancer Res 23(22):7130–7140

    Article  PubMed  CAS  Google Scholar 

  35. Hoffmann P, Saoudi Y, Benharouga M, Graham CH, Schaal JP, Mazouni C, Feige JJ, Alfaidy N (2009) Role of EG-VEGF in human placentation: physiological and pathological implications. J Cell Mol Med 13(8B):2224–2235

    Article  PubMed  Google Scholar 

  36. Murthi P, Brouillet S, Pratt A, Borg A, Kalionis B, Goffin F, Tsatsaris V, Munaut C, Feige J, Benharouga M, Fournier T, Alfaidy N (2015) An EG-VEGF-dependent decrease in homeobox gene NKX3.1 contributes to cytotrophoblast dysfunction: a possible mechanism in human fetal growth restriction. Mol Med. https://doi.org/10.2119/molmed.2015.00071

  37. Burton GJ, Jaunaiux E (2001) Maternal vascularisation of the human placenta: does the embryo develop in a hypoxic environment? Gynecol Obstet Fertil 29(7–8):503–508

    Article  PubMed  CAS  Google Scholar 

  38. Huppertz B, Gauster M, Orendi K, Konig J, Moser G (2009) Oxygen as modulator of trophoblast invasion. J Anat 215(1):14–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36(3):464–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nandi P, Siddiqui MF, Lala PK (2016) Restraint of trophoblast invasion of the uterus by decorin: role in pre-eclampsia. Am J Reprod Immunol 75(3):351–360

    Article  PubMed  CAS  Google Scholar 

  41. Pollheimer J, Haslinger P, Fock V, Prast J, Saleh L, Biadasiewicz K, Jetne-Edelmann R, Haraldsen G, Haider S, Hirtenlehner-Ferber K, Knofler M (2011) Endostatin suppresses IGF-II-mediated signaling and invasion of human extravillous trophoblasts. Endocrinology 152(11):4431–4442

    Article  PubMed  CAS  Google Scholar 

  42. Stefanoska I, Jovanovic Krivokuca M, Vasilijic S, Cujic D, Vicovac L (2013) Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 34(9):775–783

    Article  PubMed  CAS  Google Scholar 

  43. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog 7(12):e1002452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  45. Sun X, Song X, Zhang L, Sun J, Wei X, Meng L, An J (2016) NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun 479(4):656–662

    Article  PubMed  CAS  Google Scholar 

  46. Burton GJ (2009) Oxygen, the Janus gas; its effects on human placental development and function. J Anat 215(1):27–35

    Article  PubMed  CAS  Google Scholar 

  47. Tilburgs T, Meissner TB, Ferreira LMR, Mulder A, Musunuru K, Ye J, Strominger JL (2017) NLRP2 is a suppressor of NF-kB signaling and HLA-C expression in human trophoblasts†,‡. Biol Reprod 96(4):831–842

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brouillet S, Hoffmann P, Feige JJ, Alfaidy N (2012) EG-VEGF: a key endocrine factor in placental development. Trends Endocrinol Metab 23(10):501–508

    Article  PubMed  CAS  Google Scholar 

  49. Guo Z, Yu S, Chen X, Ye R, Zhu W, Liu X (2016) NLRP3 is involved in ischemia/reperfusion injury. CNS Neurol Disord Drug Targets 15(6):699–712

    Article  PubMed  CAS  Google Scholar 

  50. Thaete LG, Qu XW, Jilling T, Crawford SE, Fitchev P, Hirsch E, Khan S, Neerhof MG (2013) Impact of toll-like receptor 4 deficiency on the response to uterine ischemia/reperfusion in mice. Reproduction 145(5):517–526

    Article  PubMed  CAS  Google Scholar 

  51. Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31(11):2370–2377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sun HJ, Ren XS, Xiong XQ, Chen YZ, Zhao MX, Wang JJ, Zhou YB, Han Y, Chen Q, Li YH, Kang YM, Zhu GQ (2017) NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis 8(10):e3074

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M (2017) Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol 8:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Sophie Ndagijimana for her technical assistance.

Funding

This work is financially supported by the Institut National de la Santé et de la Recherche Médicale (U1036), University Grenoble-Alpes, Commissariat à l’Energie Atomique (DSV/iRTSV/BCI), Région Auvergne-Rhône-Alpes “CLARA,” Ligue Nationale contre le Cancer and Ligue Départementale (Isère), and Fondation pour la recherche Médicale (FRM) SPF20150934074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Alfaidy.

Ethics declarations

Collection and processing of human placentas were approved by the local hospital ethical committees. All procedures were conducted in accordance with the Helsinki Declaration of 1975. All patients gave fully informed consent to participate in the research, and the institutional review board approved this investigation. These institutions were represented by the CCPP no. 1508520v0 (Comité Consultatif de Protection des Personnes) protocol 01-78 and by the Royal women’s hospital human and research ethics committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

ESM 2

Fig. S1: Panel A reports the specificity of the NLRP7 antibody. The blot in (a) shows the 100 KDa band corresponding the NLRP7 protein in HTR8/SVneo cells. The blot in (b) shows that the band corresponding to 100 KDa disappeared in the presence of the antigenic peptide used at 20 times the concentration of NLRP7 antibody used in all experiments. Fig. S2: Effects of NLRP7 activation or silencing on IL-1β and IL-18 expression and secretion in HTR8/SVneo. Panels A-B reports the effects of NLRP7 activation using FSL-1 on the secretion and production of IL-1β. Panel B reports the effects of NLRP7 activation using FSL-1 on the secretion of IL-18. Panel D and E report mRNA expression of IL1-B and IL-18 upon NLRP7 inactivation in HTR8/SVneo cells (n = 6). Data represent the mean ± SD. (**P < 0.01). Fig. S3: Validation of siRNA strategy in HTR8/SVneo, BeWo, primary cultures and placental explants: Panel A-B report the effects NLRP7 siRNA transfection in HTR8/SVneo cells on the expression of NLRP7 mRNA and protein, respectively. Panel C-D report the effects NLRP7 siRNA transfection in BeWo cells on the expression of NLRP7 mRNA and protein, respectively. Panel E-F report the effects NLRP7 siRNA transfection in primary trophoblast culture on the expression of NLRP7 mRNA and protein, respectively. Panel G-H report the effects NLRP7 siRNA transfection in placental explants on the expression of NLRP7 mRNA and protein, respectively. Data represent the mean ± SD. All experiments were performed at least three times. Fig. S4: Panel A. reports primary trophoblast syncytialisation in Scrambled siRNA (a) and NLRP7 siRNA (b) conditions. Panel B reports a comparison of syncytialisation of BeWo cells in Scrambled siRNA (a) and NLRP7 siRNA (b) using the desmoplakin immuno-staining. Panel C reports a blot that illustrates the activation of caspase-1 upon the specific activation of the NLRP7 inflammasome in the HTR8/SVneo, using FSL-1. Fig. S5: Cytokine array comparison of conditioned media collected from Scrambled siRNA and NLRP7 siRNA. Panel A reports a graph of global analysis of 54 cytokines assessed in Scrambled siRNA and NLRP7 siRNA treated BeWo cells. Blue arrows indicate the cytokine that have been significantly deregulated upon NLRP7 inhibition and are associated with trophoblast invasion. Panel B reports the validation of the IGF-II, VEGF-R2 and prolactin at the mRNA levels using RT-qPCR (n = 3). Data represent the mean ± SD. (PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi Nahed, R., Reynaud, D., Borg, A.J. et al. NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation. J Mol Med 97, 355–367 (2019). https://doi.org/10.1007/s00109-018-01737-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-01737-x

Keywords

Navigation