Skip to main content
Log in

Sequential combination of docetaxel with a SHP-1 agonist enhanced suppression of p-STAT3 signaling and apoptosis in triple negative breast cancer cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) is an aggressive cancer for which prognosis remains poor. Combination therapy is a promising strategy for enhancing treatment efficacy. Blockade of STAT3 signaling may enhance the response of cancer cells to conventional chemotherapeutic agents. Here we used a SHP-1 agonist SC-43 to dephosphorylate STAT3 thereby suppressing oncogenic STAT3 signaling and tested it in combination with docetaxel in TNBC cells. We first analyzed messenger RNA (mRNA) expression of SHP-1 gene (PTPN6) in a public TNBC dataset (TCGA) and found that higher SHP-1 mRNA expression is associated with better overall survival in TNBC patients. Sequential combination of docetaxel and SC-43 in vitro showed enhanced anti-proliferation and apoptosis associated with decreased p-STAT3 and decreased STAT3-downstream effector cyclin D1 in the TNBC cell lines MDA-MB-231, MDA-MB-468, and HCC-1937. Ectopic expression of STAT3 reduced the increased cytotoxicity induced by the combination therapy. In addition, this sequential combination showed enhanced SHP-1 activity compared to SC-43 alone. Furthermore, the combination treatment-induced apoptosis was attenuated by small interfering RNA (siRNA) against SHP-1 or by ectopic expression of SHP-1 mutants that caused SC-43 to lose its SHP-1 agonist capability. Moreover, combination of docetaxel and SC-43 showed enhanced tumor growth inhibition compared to single-agent therapy in mice bearing MDA-MB-231 tumor xenografts. Our results suggest that the novel SHP-1 agonist SC-43 enhanced docetaxel-induced cytotoxicity by SHP-1 dependent STAT3 inhibition in human triple negative breast cancer cells. TNBC patients with high SHP-1 expressions show better survival. Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3. SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination. Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3.

Key messages

  • TNBC patients with high SHP-1 expressions show better survival.

  • Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3.

  • SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination.

  • Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalimutho M, Parsons K, Mittal D, Lopez JA, Srihari S, Khanna KK (2015) Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci. doi:10.1016/j.tips.2015.08.009

  2. Ismail-Khan R, Bui MM (2010) A review of triple-negative breast cancer. Cancer Control 17:173–176

    PubMed  Google Scholar 

  3. Mustacchi G, De Laurentiis M (2015) The role of taxanes in triple-negative breast cancer: literature review. Drug Des Devel Ther 9:4303–4318

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26:778–785

    Article  PubMed  Google Scholar 

  5. Wahba HA, El-Hadaad HA (2015) Current approaches in treatment of triple-negative breast cancer. Cancer Biol med 12:106–116

    PubMed  PubMed Central  Google Scholar 

  6. Liedtke C, Rody A (2015) New treatment strategies for patients with triple-negative breast cancer. Curr Opin Obstet Gynecol 27:77–84

    Article  PubMed  Google Scholar 

  7. Sledge GW Jr, Loehrer PJ Sr, Roth BJ, Einhorn LH (1988) Cisplatin as first-line therapy for metastatic breast cancer. J Clin Oncol 6:1811–1814

    Article  PubMed  Google Scholar 

  8. Petrelli F, Coinu A, Borgonovo K, Cabiddu M, Ghilardi M, Lonati V, Barni S (2014) The value of platinum agents as neoadjuvant chemotherapy in triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer res Treat 144:223–232

    Article  CAS  PubMed  Google Scholar 

  9. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN et al (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer res 19:5533–5540

    Article  CAS  PubMed  Google Scholar 

  10. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    Article  PubMed  Google Scholar 

  11. Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB et al (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer res 73:3470–3480

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee K, Resat H (2015) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. doi:10.1002/ijc.29923

  13. Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, Bornmann W, Bromberg JF (2007) Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer res 9:R32

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim SR, Seo HS, Choi HS, Cho SG, Kim YK, Hong EH, Shin YC, Ko SG (2013) Trichosanthes kirilowii ethanol extract and cucurbitacin D inhibit cell growth and induce apoptosis through inhibition of STAT3 activity in breast cancer cells. Evidence-based complementary and alternative medicine: eCAM 2013: 975350. doi:10.1155/2013/975350

  15. Walker SR, Xiang M, Frank DA (2014) Distinct roles of STAT3 and STAT5 in the pathogenesis and targeted therapy of breast cancer. Mol Cell Endocrinol 382:616–621

    Article  CAS  PubMed  Google Scholar 

  16. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S et al (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513

    Article  CAS  PubMed  Google Scholar 

  17. Tell RW, Horvath CM (2014) Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors. Proc Natl Acad Sci U S a 111:12787–12792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gariboldi MB, Ravizza R, Molteni R, Osella D, Gabano E, Monti E (2007) Inhibition of Stat3 increases doxorubicin sensitivity in a human metastatic breast cancer cell line. Cancer Lett 258:181–188

    Article  CAS  PubMed  Google Scholar 

  19. Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, Koh W, Lee EO, Ahn KS, Lu J, Kim SH (2011) Oral administration of penta-O-galloyl-beta-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 32:804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest 121:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim G, Ouzounova M, Quraishi AA, Davis A, Tawakkol N, Clouthier SG, Malik F, Paulson AK, D'Angelo RC, Korkaya S et al (2015) SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene 34:671–680

    Article  CAS  PubMed  Google Scholar 

  22. Lopez-Ruiz P, Rodriguez-Ubreva J, Cariaga AE, Cortes MA, Colas B (2011) SHP-1 in cell-cycle regulation. Anti Cancer Agents med Chem 11:89–98

    Article  CAS  Google Scholar 

  23. Wu C, Sun M, Liu L, Zhou GW (2003) The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306:1–12

    Article  CAS  PubMed  Google Scholar 

  24. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW, Chen KF (2014) Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology 59:190–201

    Article  CAS  PubMed  Google Scholar 

  25. Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, Jiang JK, Chen KF (2015) Pharmacological targeting SHP-1-STAT3 signaling is a promising therapeutic approach for the treatment of colorectal cancer. Neoplasia 17:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu CY, Tseng LM, Su JC, Chang KC, Chu PY, Tai WT, Shiau CW, Chen KF (2013) Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Breast Cancer res 15:R63

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shields BJ, Wiede F, Gurzov EN, Wee K, Hauser C, Zhu HJ, Molloy TJ, O'Toole SA, Daly RJ, Sutherland RL et al (2013) TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol Cell Biol 33:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. N. CTaM (2005) CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn Inc, Paramus

  29. Rivera E, Mejia JA, Arun BK, Adinin RB, Walters RS, Brewster A, Broglio KR, Yin G, Esmaeli B, Hortobagyi GN et al (2008) Phase 3 study comparing the use of docetaxel on an every-3-week versus weekly schedule in the treatment of metastatic breast cancer. Cancer 112:1455–1461

    Article  CAS  PubMed  Google Scholar 

  30. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  31. Zhao R, Fu X, Teng L, Li Q, Zhao ZJ (2003) Blocking the function of tyrosine phosphatase SHP-2 by targeting its Src homology 2 domains. J Biol Chem 278:42893–42898

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Price JE, Polyzos A, Zhang RD, Daniels LM (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer res 50:717–721

    CAS  PubMed  Google Scholar 

  34. Zhang X, Zhang S, Liu Y, Liu J, Ma Y, Zhu Y, Zhang J (2012) Effects of the combination of RAD001 and docetaxel on breast cancer stem cells. Eur J Cancer 48:1581–1592

    Article  CAS  PubMed  Google Scholar 

  35. Sun Y (2016) Tumor microenvironment and cancer therapy resistance. Cancer Lett 380:205–215

    Article  CAS  PubMed  Google Scholar 

  36. Chao TI, Tai WT, Hung MH, Tsai MH, Chen MH, Chang MJ, Shiau CW, Chen KF (2016) A combination of sorafenib and SC-43 is a synergistic SHP-1 agonist duo to advance hepatocellular carcinoma therapy. Cancer Lett 371:205–213

    Article  CAS  PubMed  Google Scholar 

  37. Delibrias CC, Floettmann JE, Rowe M, Fearon DT (1997) Downregulated expression of SHP-1 in Burkitt lymphomas and germinal center B lymphocytes. J exp med 186:1575–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thangaraju M, Sharma K, Liu D, Shen SH, Srikant CB (1999) Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. Cancer Res 59:1649–1654

    CAS  PubMed  Google Scholar 

  39. Lopez F, Esteve JP, Buscail L, Delesque N, Saint-Laurent N, Theveniau M, Nahmias C, Vaysse N, Susini C (1997) The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem 272:24448–24454

    Article  CAS  PubMed  Google Scholar 

  40. Zapata PD, Ropero RM, Valencia AM, Buscail L, Lopez JI, Martin-Orozco RM, Prieto JC, Angulo J, Susini C, Lopez-Ruiz P et al (2002) Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1. J Clin Endocrinol Metab 87:915–926

    Article  CAS  PubMed  Google Scholar 

  41. Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, Montironi R, Santini D, Danesi R, Tortora G et al (2015) Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs 24:809–824

    Article  CAS  PubMed  Google Scholar 

  42. Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21:7611–7618

    Article  CAS  PubMed  Google Scholar 

  43. Sharma Y, Ahmad A, Bashir S, Elahi A, Khan F (2016) Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways. Future Oncol 12:1287–1298

    Article  CAS  PubMed  Google Scholar 

  44. Su JC, Chen KF, Chen WL, Liu CY, Huang JW, Tai WT, Chen PJ, Kim I, Shiau CW (2012) Synthesis and biological activity of obatoclax derivatives as novel and potent SHP-1 agonists. Eur J med Chem 56:127–133

    Article  CAS  PubMed  Google Scholar 

  45. Ma L, Wen ZS, Liu Z, Hu Z, Ma J, Chen XQ, Liu YQ, Pu JX, Xiao WL, Sun HD et al (2011) Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer. PLoS One 6:e20159. doi:10.1371/journal.pone.0020159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer res 12:R68

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA, Tonk V, Blum JL, Schneider NR, Wistuba II, Shay JW et al (1998) Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer res 58:3237–3242

    CAS  PubMed  Google Scholar 

  49. Alba E, Martin M, Ramos M, Adrover E, Balil A, Jara C, Barnadas A, Fernandez-Aramburo A, Sanchez-Rovira P, Amenedo M et al (2004) Multicenter randomized trial comparing sequential with concomitant administration of doxorubicin and docetaxel as first-line treatment of metastatic breast cancer: a Spanish Breast Cancer Research Group (GEICAM-9903) phase III study. J Clin Oncol 22:2587–2593

    Article  CAS  PubMed  Google Scholar 

  50. Sledge GW, Neuberg D, Bernardo P, Ingle JN, Martino S, Rowinsky EK, Wood WC (2003) Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 21:588–592

    Article  PubMed  Google Scholar 

  51. Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ming Tseng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research involving animals

The animal study was approved and all experimental procedures using these mice were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee of Taipei Veterans General Hospital.

Funding information

This work was supported by grants from the Taiwan Clinical Oncology Research Foundation; the Yen Tjing Ling Medical Foundation (CI-104-07); the Ministry of Science and Technology, Taiwan (MOST 103-2811-B-002-157, MOST 103-2325-B-075-002, MOST 104-2628-B-075-001-MY3, MOST 104-2811-B-002-030, MOST 104-2321-B-010-017, 105-2314-B-002-190-MY2); the National Health Research Institutes, Taiwan (NHRI-EX106-10608BI); Yang-Ming Branch of Taipei City Hospital (104 No. 35, M-1A00-B-B17-35); Taipei Veterans General Hospital (V103C-141, V104C-151, V105C-067); the TVGH-NTUH Joint Research Program (VN103-08, and VN105-09) from Taipei Veterans General Hospital and National Taiwan University Hospital, and from the Ministry of Health and Welfare, Executive Yuan, Taiwan (MOHW105-TDU-B-211-134-003, MOHW104-TDU-B-211-124-001 for the Center of Excellence, and MOHW103TDU-212-114-002, MOHW106-TDU-B-211-144-003 for Cancer Research at Taipei Veterans General Hospital). This study was also partially supported by the Chong Hin Loon Memorial Cancer and the Biotherapy Research Center of National Yang-Ming University, Taipei, Taiwan.

Electronic supplementary material

ESM 1

(PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CY., Chen, KF., Chao, TI. et al. Sequential combination of docetaxel with a SHP-1 agonist enhanced suppression of p-STAT3 signaling and apoptosis in triple negative breast cancer cells. J Mol Med 95, 965–975 (2017). https://doi.org/10.1007/s00109-017-1549-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1549-x

Keywords

Navigation