Skip to main content

Advertisement

Log in

Adapting conventional cancer treatment for immunotherapy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The efficacy of directly killing tumors by conventional cancer therapies, such as chemotherapy and radiotherapy, has been for several decades well established. But, a suppressed immune response might become a lethal side effect after repeated cycles of intensive treatment. Recently, achievements in immune checkpoint inhibitors and adoptive T cell-mediated immunotherapies have resulted in changes in frontline management of advanced cancer diseases. However, accumulated evidence indicates that immunotherapeutic and conventional strategies alone are often ineffective to eradicate big tumors or metastasis. To improve the outcomes of treatment for advanced cancer diseases, the combination of conventional cancer treatment with various immunotherapeutic approaches has been attempted and has shown potential synergistic effects. Recent studies have unexpectedly demonstrated that some strategies of conventional cancer treatment can regulate the immune response positively, thus the understanding of how to adapt conventional treatment for immunotherapy is crucial to the design of effective combination therapy of conventional treatment with immunotherapy. Here, we review both experimental and clinical studies on the therapeutic effect and its mechanisms of combining conventional therapy with immunotherapy in treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Article  CAS  PubMed  Google Scholar 

  2. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT, Harari PM (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27:3944–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614

    Article  CAS  PubMed  Google Scholar 

  4. Bardelli A, Siena S (2010) Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28:1254–1261

    Article  CAS  PubMed  Google Scholar 

  5. Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, Ercan D, Rogers A, Roncalli M, Takeda M et al. (2011) Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 3: 99ra86

  6. Yoon J, Koo KH, Choi KY (2011) MEK1/2 inhibitors AS703026 and AZD6244 may be potential therapies for KRAS mutated colorectal cancer that is resistant to EGFR monoclonal antibody therapy. Cancer Res 71:445–453

    Article  CAS  PubMed  Google Scholar 

  7. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, Guardino E, Lu M, Zheng M, Girish S et al (2012) A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol 30:3234–3241

    Article  CAS  PubMed  Google Scholar 

  9. Fayad L, Offner F, Smith MR, Verhoef G, Johnson P, Kaufman JL, Rohatiner A, Advani A, Foran J, Hess G et al (2013) Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol 31:573–583

    Article  CAS  PubMed  Google Scholar 

  10. Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J, Guardino E, Song C, Tong B, Ng V et al (2013) Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31:1157–1163

    Article  CAS  PubMed  Google Scholar 

  11. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Tartour E, Spisek R et al (2014) Trial watch: dendritic cell-based anticancer therapy. Oncoimmunology 3, e963424

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30:2046–2054

    Article  CAS  PubMed  Google Scholar 

  14. Reck M, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Lu H, Cuillerot JM, Lynch TJ (2013) Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol 24:75–83

    Article  CAS  PubMed  Google Scholar 

  15. Mihich E (1969) Combined effects of chemotherapy and immunity against leukemia L1210 in DBA-2 mice. Cancer Res 29:848–854

    CAS  PubMed  Google Scholar 

  16. Mihich E (1969) Modification of tumor regression by immunologic means. Cancer Res 29:2345–2350

    CAS  PubMed  Google Scholar 

  17. Mihich E (1971) Preclinical evaluation of the interrelationships between cancer chemotherapy and immunity. Natl Cancer Inst Monogr 34:90–102

    CAS  PubMed  Google Scholar 

  18. Bryniarski K, Szczepanik M, Ptak M, Zemelka M, Ptak W (2009) Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. Pharmacol Rep 61:550–557

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Jaffar J, Hellstrom I, Hellstrom KE (2010) Administration of cyclophosphamide changes the immune profile of tumor-bearing mice. J Immunother 33:53–59

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doloff JC, Waxman DJ (2012) VEGF receptor inhibitors block the ability of metronomically dosed cyclophosphamide to activate innate immunity-induced tumor regression. Cancer Res 72:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buhtoiarov IN, Sondel PM, Wigginton JM, Buhtoiarova TN, Yanke EM, Mahvi DA, Rakhmilevich AL (2011) Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132:226–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Javeed A, Ashraf M, Riaz A, Ghafoor A, Afzal S, Mukhtar MM (2009) Paclitaxel and immune system. Eur J Pharm Sci 38:283–290

    Article  CAS  PubMed  Google Scholar 

  23. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  CAS  PubMed  Google Scholar 

  24. Predina JD, Judy B, Aliperti LA, Fridlender ZG, Blouin A, Kapoor V, Laguna B, Nakagawa H, Rustgi AK, Aguilar L et al (2011) Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models. Cancer Gene Ther 18:871–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsuchikawa T, Md MM, Yamamura Y, Shichinohe T, Hirano S, Kondo S (2012) The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment of esophageal squamous cell carcinoma. Ann Surg Oncol 19:1713–1719

    Article  PubMed  Google Scholar 

  26. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  CAS  PubMed  Google Scholar 

  27. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, Carlei D, Belardelli F (1998) Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 101:429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ (2000) Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer 87:253–260

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg PD (1991) Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 49:281–355

    Article  CAS  PubMed  Google Scholar 

  30. Kim YH, Choi BK, Oh HS, Kang WJ, Mittler RS, Kwon BS (2009) Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol Cancer Ther 8:469–478

    Article  CAS  PubMed  Google Scholar 

  31. Motoyoshi Y, Kaminoda K, Saitoh O, Hamasaki K, Nakao K, Ishii N, Nagayama Y, Eguchi K (2006) Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep 16:141–146

    CAS  PubMed  Google Scholar 

  32. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  CAS  PubMed  Google Scholar 

  33. Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ, Wang Y, Cheng X, Li YQ, Xia JC et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604

    Article  CAS  PubMed  Google Scholar 

  34. Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F (2008) Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 57:1579–1587

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  CAS  PubMed  Google Scholar 

  36. Di Caro G, Cortese N, Castino GF, Grizzi F, Gavazzi F, Ridolfi C, Capretti G, Mineri R, Todoric J, Zerbi A et al. (2015) Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut DOI

  37. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  38. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M et al (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337:1678–1684

    Article  CAS  PubMed  Google Scholar 

  39. Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K et al (2013) Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38:729–741

    Article  CAS  PubMed  Google Scholar 

  40. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    Article  CAS  PubMed  Google Scholar 

  41. Michaud M, Xie X, Bravo-San Pedro JM, Zitvogel L, White E, Kroemer G (2014) An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 3, e944047

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remedios C et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301–1309

    Article  CAS  PubMed  Google Scholar 

  43. Burnette B, Weichselbaum RR (2013) Radiation as an immune modulator. Semin Radiat Oncol 23:273–280

    Article  PubMed  Google Scholar 

  44. Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, Iwamoto KS, McBride WH (2004) Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173:2462–2469

    Article  CAS  PubMed  Google Scholar 

  45. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye GW, Park JB, Park YJ, Choi YS, Sin JI (2007) Increased sensitivity of radiated murine cervical cancer tumors to E7 subunit vaccine-driven CTL-mediated killing induces synergistic anti-tumor activity. Mol Ther 15:1564–1570

    Article  CAS  PubMed  Google Scholar 

  47. Weng D, Song B, Koido S, Calderwood SK, Gong J (2013) Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J Immunol 191:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

    Article  CAS  PubMed  Google Scholar 

  50. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181:3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, Schwendener R, Pruschy M, Knuth A, van den Broek M (2012) Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol 189:558–566

    Article  CAS  PubMed  Google Scholar 

  53. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852

    Article  CAS  PubMed  Google Scholar 

  54. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    Article  CAS  PubMed  Google Scholar 

  55. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    Article  CAS  PubMed  Google Scholar 

  56. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488

    Article  CAS  PubMed  Google Scholar 

  57. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deng L, Liang H, Burnette B, Weicheslbaum RR, Fu YX (2014) Radiation and anti-PD-L1 antibody combinatorial therapy induces T cell-mediated depletion of myeloid-derived suppressor cells and tumor regression. Oncoimmunology 3, e28499

    Article  PubMed  PubMed Central  Google Scholar 

  59. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377

    Article  CAS  PubMed  Google Scholar 

  60. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    CAS  PubMed  Google Scholar 

  61. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research in our laboratory was partially supported by grants from the US National Institutes of Health (CA134563). We thank Mr. Daryl Harmon for editing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Xin Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Liu, Z. & Fu, YX. Adapting conventional cancer treatment for immunotherapy. J Mol Med 94, 489–495 (2016). https://doi.org/10.1007/s00109-016-1393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1393-4

Keywords

Navigation