Skip to main content

Advertisement

Log in

Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Renal fibrosis is a crucial event in the pathogenesis of diabetic nephropathy (DN). The process known as epithelial to mesenchymal transition (EMT) contributes to the accumulation of matrix proteins in kidneys, in which renal tubular epithelial cells play an important role in progressive renal fibrosis. The current study investigated that chrysin (5,7-dihydroxyflavone) present in bee propolis and herbs, inhibited renal tubular EMT and tubulointerstitial fibrosis due to chronic hyperglycemia. Human renal proximal tubular epithelial cells (RPTEC) were incubated in media containing 5.5 mM glucose, 27.5 mM mannitol (as an osmotic control), or 33 mM glucose (HG) in the absence and presence of 1–20 μM chrysin for 72 h. Chrysin significantly inhibited high glucose-induced renal EMT through blocking expression of the mesenchymal markers vimentin, α-smooth muscle actin, and fibroblast-specific protein-1 in RPTEC and db/db mice. Chrysin reversed the HG-induced down-regulation of the epithelial marker E-cadherin and the HG-enhanced N-cadherin induction in RPTEC. In addition, chrysin inhibited the production of collagen IV in tubular cells and the deposition of collagen fibers in mouse kidneys. Furthermore, chrysin blocked tubular cell migration concurrent with decreasing matrix metalloproteinase-2 activity, indicating epithelial cell derangement and tubular basement membrane disruption. Chrysin restored the induction of the tight junction proteins Zona occludens protein-1 (ZO-1) and occludin downregulated in diabetic mice. Chrysin inhibited renal tubular EMT-mediated tubulointerstitial fibrosis caused by chronic hyperglycemia. Therefore, chrysin may be a potent renoprotective agent for the treatment of renal fibrosis-associated DN.

Key messages

• Glucose increases renal tubular epithelial induction of vimentin, α-SMA and FSP-1.

• Glucose enhances renal EMT by blocking tubular epithelial E-cadherin expression.

• Chrysin inhibits tubular EMT-mediated tubulointerstitial fibrosis in mouse kidneys.

• Chrysin restores renal tubular induction of ZO-1 and occludin downregulated in diabetic mice.

• Chrysin blocks glucose-induced renal tubular cell migration with reducing MMP-2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CTGF:

Connective tissue growth factor

DN:

Diabetic nephropathy

ECM:

Extracellular matrix

EMT:

Epithelial to mesenchymal transition

FSP-1:

Fibroblast-specific protein

MT1-MMP:

Membrane type 1-matrix metalloproteinase

RPTEC:

Human renal proximal tubular epithelial cells

α-SMA:

α-smooth muscle actin

TIMP-2:

Tissue inhibitor of metalloproteinase-2

ZO-1:

Zona occludens protein-1

References

  1. Chuang PY, Menon MC, He JC (2013) Molecular targets for treatment of kidney fibrosis. J Mol Med (Berl) 91:549–559

    Article  CAS  Google Scholar 

  2. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kanasaki K, Taduri G, Koya D (2013) Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 4:7

    Google Scholar 

  4. Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116

    Article  CAS  PubMed  Google Scholar 

  5. He J, Xu Y, Koya D, Kanasaki K (2013) Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol 17:488–497

    Article  CAS  PubMed  Google Scholar 

  6. Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition in kidney fibrosis: fact or fantasy? J Clin Invest 121:468–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, Neilson EG (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61:1714–1728

    Article  CAS  PubMed  Google Scholar 

  8. Hackett TL (2012) Epithelial-mesenchymal transition in the pathophysiology of airway remodeling in asthma. Curr Opin Allergy Clin Immunol 12:53–59

    Article  CAS  PubMed  Google Scholar 

  9. Hills CE, Squires PE (2010) TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 31:68–74

    Article  CAS  PubMed  Google Scholar 

  10. Loeffler I, Wolf G (2014) Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i37–i45

    Article  CAS  PubMed  Google Scholar 

  11. Kang MK, Li J, Kim JL, Gong JH, Kwak SN, Park JH, Lee JY, Lim SS, Kang YH (2012) Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration. Am J Physiol Renal Physiol 303:F1060–F1069

    Article  CAS  PubMed  Google Scholar 

  12. Papadimitriou A, Peixoto EB, Silva KC, Lopes de Faria JM, Lopes de Faria JB (2014) Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFβ-1 signaling. J Nutr Biochem 25:773–784

    Article  CAS  PubMed  Google Scholar 

  13. Wen D, Huang X, Zhang M, Zhang L, Chen J, Gu Y, Hao CM (2013) Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One 8:e82336

    Article  PubMed Central  PubMed  Google Scholar 

  14. Li J, Lim SS, Lee ES, Gong JH, Shin D, Kang IJ, Kang YH (2011) Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp Biol Med (Maywood) 236:435–444

    Article  CAS  Google Scholar 

  15. Yang YS, Wang CJ, Huang CN, Chen ML, Chen MJ, Peng CH (2013) Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via attenuating renal epithelial mesenchymal transition. J Agric Food Chem 61:7545–7551

    Article  CAS  PubMed  Google Scholar 

  16. Wang JY, Gao YB, Zhang N, Zou DW, Xu LP, Zhu ZY, Li JY, Zhou SN, Cui FQ, Zeng XJ et al (2014) Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Am J Physiol Renal Physiol 306:F486–F495

    Article  CAS  PubMed  Google Scholar 

  17. Li R, Wang Y, Liu Y, Chen Q, Fu W, Wang H, Cai H, Peng W, Zhang X (2013) Curcumin inhibits transforming growth factor-β1-induced EMT via PPARγ pathway, not Smad pathway in renal tubular epithelial cells. PLoS One 8:e58848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang B, Huang J, Xiang T, Yin X, Luo X, Huang J, Luo F, Li H, Li H, Ren G (2014) Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol 34:105–112

    Article  CAS  PubMed  Google Scholar 

  19. Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, Ding S, Niu Z, Lu Y, Shen P (2014) Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol 89:503–514

    Article  CAS  PubMed  Google Scholar 

  20. Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E (2014) Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 728:107–118

    Article  CAS  PubMed  Google Scholar 

  21. Ta N, Walle T (2007) Aromatase inhibition by bioavailable methylated flavones. J Steroid Biochem Mol Biol 107:127–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Scanlon CS, Van Tubergen EA, Inglehart RC, D’Silva NJ (2013) Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 92:114–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bonegio R, Susztak K (2012) Notch signaling in diabetic nephropathy. Exp Cell Res 318:986–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Qi W, Chen X, Poronnik P, Pollock CA (2006) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5

    Article  CAS  PubMed  Google Scholar 

  25. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905–F911

    Article  CAS  PubMed  Google Scholar 

  26. Rao R (2009) Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci 1165:62–68

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Lee YS, Choi JS, Sung HY, Kim JK, Lim SS, Kang YH (2010) Roasted licorice extracts dampen high glucose-induced mesangial hyperplasia and matrix deposition through blocking Akt activation and TGF-beta signaling. Phytomedicine 17:800–810

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Q, Zeng R, Xu C, Liu L, Chen L, Kou P, Pei G, Bai S, Zhang Y, Li C et al (2012) Erbin inhibits TGF-β1-induced EMT in renal tubular epithelial cells through an ERK-dependent pathway. J Mol Med (Berl) 90:563–574

    Article  CAS  Google Scholar 

  29. Garud MS, Kulkarni YA (2014) Hyperglycemia to nephropathy via transforming growth factor beta. Curr Diabetes Rev 10:182–189

    Article  CAS  PubMed  Google Scholar 

  30. Pushpavalli G, Kalaiarasi P, Veeramani C, Pugalendi KV (2010) Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. Eur J Pharmacol 631:36–41

    Article  CAS  PubMed  Google Scholar 

  31. Dou W, Zhang J, Zhang E, Sun A, Ding L, Chou G, Wang Z, Mani S (2013) Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. J Pharmacol Exp Ther 345:473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lirdprapamongkol K, Sakurai H, Abdelhamed S, Yokoyama S, Maruyama T, Athikomkulchai S, Viriyaroj A, Awale S, Yagita H, Ruchirawat S et al (2013) A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep 30:2357–2364

    CAS  PubMed  Google Scholar 

  33. Mohammed HA, Ba LA, Burkholz T, Schumann E, Diesel B, Zapp J, Kiemer AK, Ries C, Hartmann RW, Hosny M et al (2011) Facile synthesis of chrysin-derivatives with promising activities as aromatase inhibitors. Nat Prod Commun 6:31–34

    CAS  PubMed  Google Scholar 

  34. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 279:1–7

    Article  CAS  PubMed  Google Scholar 

  35. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101:830–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Du X, Shimizu A, Masuda Y, Kuwahara N, Arai T, Kataoka M, Uchiyama M, Kaneko T, Akimoto T, Iino Y et al (2012) Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy. Lab Invest 92:1149–1160

    Article  CAS  PubMed  Google Scholar 

  37. Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C, Deroanne C, Thompson EW, Foidart JM, Noel A (2002) MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J 16:555–564

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata K, Tanaka Y, Minami Y (2013) Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 18:608–619

    Article  CAS  PubMed  Google Scholar 

  39. Lee DB, Huang E, Ward HJ (2006) Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 290:F20–F34

    Article  CAS  PubMed  Google Scholar 

  40. Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  CAS  PubMed  Google Scholar 

  41. Zhang K, Zhang H, Xiang H, Liu J, Liu Y, Zhang X, Wang J, Tang (2013) TGF-β1 induces the dissolution of tight junctions in human renal proximal tubular cells: role of the RhoA/ROCK signaling pathway. Int J Mol Med 32:464–468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science Technology (MEST) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2014028986) and by the National Research Foundation of Korea (2014028986). This work was also supported by the NRF grant funded by the Korean government (201 2R1A2A2A01012946). The abstract of this work was presented in poster format in the Experimental Biology 2014.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hee Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, MK., Park, SH., Choi, YJ. et al. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med 93, 759–772 (2015). https://doi.org/10.1007/s00109-015-1301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1301-3

Keywords

Navigation