Skip to main content
Log in

Influence of wood modification on cutting force, specific cutting resistance and fracture parameters during the sawing process using circular sawing machine

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the cutting force and specific cutting resistance of modified beech wood (Bendywood, DMDHEU and Lignamon) and, based on experimental results, to calculate the fracture parameters for cutting in axial–perpendicular direction of these modified materials and to compare with native beech wood. In the conventional approaches, cutting force and cutting power in sawing processes of wood are generally calculated based on the specific cutting resistance, which is a function of many factors. A major deficit of these conventional methods is that they are not focusing on the physical and mechanical properties of wood. The influence of these factors is only taken into account by the coefficient of the tree species. In this work, predictions of the newly developed model for the circular sawing machine are presented. Thanks to this modern approach, it was possible to determine fracture toughness and shear yield strength of native beech wood and modified beech wood using experimental results, without performing complex fracture tests. Based on the experiments performed, it can be concluded that modifications have a partial degradation effect on wood properties. The fracture toughness and shear yield strength of the modified materials is not dependent on the density, but rather on the internal structure, extent of the degradation of the cell wall and the type of modification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afanasev PS (1961) Derevoobrabatyvayuschie stanki (Woodworking machinery), Moskva

  • Agapov AI (1983) Dinamika processa pilenija drevesiny na lesopiĺnych ramach (in Russian: Dynamics of wood sawing on frame sawing machines). Kirovskij Politechničeskij Institut Izdanije GGU, Goŕkij

    Google Scholar 

  • Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45(2):373–396

    Article  Google Scholar 

  • Atkins AG (2005) Toughness and cutting: a new way of simultaneously determining ductile fracture toughness and strength. Eng Fracture Mech 72:849–860

    Article  Google Scholar 

  • Atkins AG (2009) The science and engineering of cutting. The mechanics and process of separating, scratching and puncturing biomaterials, metals and non-metals. Butterworth-Heinemann is an imprint of Elsevier, Oxford

    Google Scholar 

  • Atkins AG, Vincent JFV (1984) An instrumented microtome for improved histological sections and the measurement of fracture toughness. J Mater Sci Lett 3:310–312. https://doi.org/10.1007/BF00729381

    Article  Google Scholar 

  • Axelsson BOM, Lundberg AS, Grönlund JA (1993) Studies of the main force at and near cutting edge. Holz Roh Werkst 51(1):43–48

    Article  Google Scholar 

  • Blackman BRK, Hoult TR, Patel Y, Williams JG (2013) Tool sharpness as a factor in machining tests to determine toughness. Eng Fract Mech 101:47–58. https://doi.org/10.1016/j.engfracmech.2012.09.020

    Article  Google Scholar 

  • Blažek Z (2005) Mechanical properties of compressed plasticized wood. Bachelor thesis, Mendel University in Brno

  • Böllinghaus T, Byrne G, Cherpakov BI, Chlebus E, Cross CE, Denkena B, Dilthey U, Hatsuzawa T, Herfurth K, Herold H et al (2009) Machining processes, (part 7–3 of chapter: manufacturing engineering). In: Grote K-H, Antonsson EK (eds) Springer handbook of mechanical engineering. Springer, Würzburg, pp 609–656

    Google Scholar 

  • Bollmus S (2011) Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) [Biological and technological properties of beech wood after modification with 1.3-dimethylol-4.5-dihydroxyethylurea (DMDHEU)]. Dissertation, University of Goettingen

  • Bollmus S, Dieste A, Militz H, Rademacher P (2009) Properties of modified beechwood. Forst und Holz 64(7/8):30–34

    Google Scholar 

  • Brischke C, Zimmer K, Ulvcrona T, Bollmus S, Welzbacher CR, Thomsen O (2012) The impact of various modification processes on the structural integrity of wood. In: The sixth European conference on wood modification, pp 91–98

  • Csanády E, Magoss E (2013) Mechanics of wood machining. Springer, Berlin

    Book  Google Scholar 

  • Derham BR, Singh T, Militz H (2017) Commercialisation of DMDHEU Modified Wood in Australasia. The International Research Group on Wood Protection, IRG/WP/17-40772

  • Emmerich L, Bollmus S, Militz H (2017) Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea)—State of the art, recent research activities and future perspectives. Wood Mater Sci Eng 14(1):3–18. https://doi.org/10.1080/17480272.2017.1417907

    Article  CAS  Google Scholar 

  • Fischer R (2004) Micro processes at cutting edge—some basics of machining wood. In: Proceedings of the 2nd international symposium on wood machining, Vienna, Austria, pp 191–202

  • Hlásková L, Orlowski KA, Kopecký Z, Jedinák M (2015) Sawing processes as a way of determining fracture toughness and shear yield stresses of wood. BioRes 10(3):5381–5394

    Article  Google Scholar 

  • Hlásková L, Orlowski K, Kopecký Z, Sviták M, Ochrymiuk T (2018) Fracture toughness and shear yield strength determination for two selected species of central European provenance. BioRes 13(3):6171–6186. https://doi.org/10.15376/biores.13.3.6171-6186

    Article  Google Scholar 

  • Hlásková L, Kopecký Z, Solař A, Patočka Z (2019) Cutting test as a source of fracture toughness and shear yield strength for axial-perpendicular model of wood cutting. Wood Fiber Sci 51(1):58–68. https://doi.org/10.22382/wfs-2019-006

    Article  Google Scholar 

  • Holan J, Merenda L (2008) Selected mechanical properties of modified beech wood. Acta univ agric et silvic Mendel Brun 1:245–250

    Article  Google Scholar 

  • Kalnins AJ, Darzins TA, Jukna AD, Berzins GV (1967) Physical mechanical properties with ammonia chemically plasticized wood. Holztechnologie 8(1):23–28

    CAS  Google Scholar 

  • Kivimaa E (1950) The cutting force in woodworking. Report no. 18. The State Institute of Technical Research, Helsinki, Finland

  • Kowaluk G, Dziurka D, Beer P, Sinn G, Tschegg S (2004) Influence of particleboards production parameters on work of fracture and work of chips formation during cutting. Electron J Polish Agric Univ Poznań 7(1):1

    Google Scholar 

  • Kopecký Z, Hlásková L, Orlowski K (2014) An innovative approach to prediction energetic effects of wood cutting process with circular-saw blades. Wood Res-Slovakia 59(5):827–834

    Google Scholar 

  • Krause A (2006) Holzmodifizierung mit N-Methylolvernetzern [Wood modification with cross-linking N-methylol compounds]. Dissertation, University of Goettingen

  • Krause A, Jones D, van der Zee M, Militz H (2003) Interlace treatment—wood modification with N-methylol compounds. In: van Acker J, Hill C (eds) Proceedings of the ECWM1—first European conference on wood modification. Ghent University, Belgium, 3–4 April 2003, pp 317–328

  • Krause A, Militz H (2009) Process for improving the durability, dimensional stability and surface hardness of a wood body. US Patent 7,595,116 B2, United States Patent and Trademark Office, Alexandria, VA, USA, p 5

  • Krenke T, Frybort S, Müller U (2017) Determining cutting force parameters by applying a system function. Mach Sci Technol. https://doi.org/10.1080/10910344.2017.1284563

    Article  Google Scholar 

  • Laternser R, Gänser H, Taenzer L, Hartmaier A (2003) Chip formation in cellular materials. J Eng Mater Technol 125(1):44–49

    Article  Google Scholar 

  • Lisičan J (1996) Theory and wood technology. Zvolen, Matcentrum

    Google Scholar 

  • Mamiński MŁ, Trzepałka A, Auriga R, H’Ng PS, Chin KL (2018) Physical and mechanical properties of thin high density fiberboard bonded with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). J Adhes. https://doi.org/10.1080/00218464.2018.1500280

    Article  Google Scholar 

  • Militz H (1993) Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Sci Technol. https://doi.org/10.1007/BF00192221

    Article  Google Scholar 

  • Orlicz T (1988) Obróbka drewna narzędziami tnącymi. (Wood processing with cutting tools). Warszawa: Skrypty SGGW-AR w Warszawie, Wydawnictwo SGGW-AR, Warszawa (in Polish)

  • Orlowski K (2007) Experimental studies on specific cutting resistance while cutting with narrow-kerf saws. Adv Manuf Sci Technol 31(1):49–63

    Google Scholar 

  • Orlowski KA, Atkins A (2007) Determination of the cutting power of the sawing process using both preliminary sawing data and modern fracture mechanics. In: Proceeding on the third international symposium on wood machining. Fracture mechanics and micromechanics of wood and wood composites with regard to wood machining, May 21–23, Lausanne, Switzerland, pp 171–174

  • Orlowski KA, Pałubicki B (2009) Recent progress in research on the cutting process of wood. A review COST action E35 2004–2008: wood machining-micromechanics and fracture. Holzforschung 63(2):181–185

    Article  CAS  Google Scholar 

  • Orlowski K, Ochrymiuk T, Atkins A, Chuchala D (2013) Application of fracture mechanics for energetic effects predictions while wood sawing. Wood Sci Technol 47(5):949–963

    Article  CAS  Google Scholar 

  • Orlowski KA, Ochrymiuk T, Sandak J, Sandak A (2017) Estimation of fracture toughness and shear yield stress of orthotropic materials in cutting with rotating tools. Eng Fract Mech 178:433–444

    Article  Google Scholar 

  • Pařil P, Brabec M, Maňák O, Rousek R, Rademacher P, Čermák P, Dejmal A (2014) Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur J Wood Prod 72(5):583–591

    Article  Google Scholar 

  • Porankiewicz B, Bermúdez JC, Tanaka C (2007) Cutting forces by peripheral cutting of low density wood species. BioResources 2(4):671–681

    Google Scholar 

  • Rademacher P, Báder M, Németh R, Klímek P (2017) European co-operation in wood research from native wood to engineered materials: Part 3: engineered hybrid wood-based products. Pro Ligno 13(4):361–372

    Google Scholar 

  • Scholz F, Duss M, Hasslinger R, Ratnasingam J (2009) Integrated model for prediction of cutting forces. In: Proceedings of the 19th international wood machining seminar. 21–23 October, 2009, Nanjing Forestry University, Nanjing, China, pp 183–190

  • Stojčev A (1979) Lignamon - zušlechtěné dřevo: Výroba, vlastnosti a použití. (Lignamon—treated wood: production, properties and uses), 1st edition. Praha, SNTL (in Czech)

  • Troppová E, Tippner J, Hrčka R, Halachan P (2013) Quasi-stationary measurements of lignamon thermal properties. BioResources 8(4):6288–6296

    Article  Google Scholar 

  • Urban J (2013) Ohýbací dřevo. (Bendywood). World Wide Web www.ohybacidrevo.cz. Accessed 19 Mar 2014

  • Veselý P, Kopecký Z, Hejmal Z, Pokorny P (2012) Diagnostics of circular sawblade vibration by displacement sensors. Drvna Industrija 63(2):81–86. https://doi.org/10.5552/drind.2012.1130

    Article  Google Scholar 

  • Wang H, Chang L, Ye L, Williams JG (2015) On the toughness measurement for ductile polymers by orthogonal cutting. Eng Fract Mech 149:276–286. https://doi.org/10.1016/j.engfracmech.2015.06.067

    Article  Google Scholar 

  • Williams JG (1998) Friction and plasticity effects in wedge splitting and cutting fracture tests. J Mater Sci 33(22):5351–5357

    Article  CAS  Google Scholar 

  • Williams JG, Patel Y, Blackman BRK (2010) A fracture mechanics analysis of cutting and machining. Eng Fract Mech 77(2):293–308

    Article  Google Scholar 

  • Xie Y, Krause A, Militz H, Turkulin H, Richter K, Mai C (2007) Effect of treatments with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) on tensile properties of wood. Holzforschung 61(1):43–50. https://doi.org/10.1515/HF.2007.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based on research sponsored by the Internal Grant Agency FFWT of Mendel University in Brno. The authors are grateful for support of project: Analysis of cutting forces from point of view fracture mechanics in quasi-orthogonal CNC milling and cutting by circular saw-blade (Grant IGA no. LDF_TP_2019008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luďka Hlásková.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlásková, L., Kopecký, Z. & Novák, V. Influence of wood modification on cutting force, specific cutting resistance and fracture parameters during the sawing process using circular sawing machine. Eur. J. Wood Prod. 78, 1173–1182 (2020). https://doi.org/10.1007/s00107-020-01581-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-020-01581-2

Navigation