Skip to main content
Log in

Accelerated wound healing and its promoting effects of topical codeine on the healing of full-thickness cutaneous wound, evidences for modulating cytokines involved in pain, inflammation and collagen biosynthesis

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Introduction

The inflammation and pain occur in all the wounds. Opioids drugs decrease pain and may act as an anti-inflammation. The current study was conducted to investigate the efficiency of the topical uses of Codeine on full-thickness excision wound models by focusing on relationship between pain mediators, inflammation and wound healing rate.

Methods

Following the induction of anesthesia, a skin wound with a size of 7-mm punch was induced on the dorsal surfaces of each mouse. The mice were divided into five categories: groups I–III were daily administered 2.5%, 5%, and 10% Codeine gel; those in group IV were administered phenytoin cream, and group V (controls) received base ointment. To assess the effects of Codeine gel on the wound healing process, the wound area, histological parameters, and the relative protein expression of CXCR1, CXCR2, IL-6, IL-6R, PDGF, PDGFR, and COL1A along with the plasma concentrations of IL-1β, IL-10, and TNF-α were investigated on days 3, 7, and 14.

Results

On days 7 and 14, the wound area was significantly lower in the treated mice compared to the controls (P < 0.05). Angiogenesis, collagen deposition, and epithelium thickness were significantly higher in the treatment groups compared to the control group (P < 0.05). The relative protein expressions of CXCR1, CXCR2, IL-6, and IL-6R and the plasma concentrations of IL-1β and TNF-α were significantly lower in the treated groups. Meanwhile, the relative protein expressions of PDGF, PDGFR, and COL1A and the plasma concentration of IL-10 were significantly higher in the treated mice (P < 0.05).

Conclusion

Administration of Codeine gel accelerated wound healing through decreasing the pain mediators, inflammation and promoting proliferative phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Volodina KV, Drozdov AS, Vinogradov Vasiliy V, Vinogradov Vladimir V, Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1–2):81–94.

    Google Scholar 

  2. Pan Z, Zhang KR, Gao HL, Zhou Y, Yan BB, Yang C, Zhang ZY, Dong L, Chen SM, Xu R, Zou DH. Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Res. 2020;13(2):373–9.

    Article  CAS  Google Scholar 

  3. Pourkarim R, Farahpour MR, Asri RS. Comparison effects of platelet-rich plasma on healing of infected and non-infected excision wounds by the modulation of the expression of inflammatory mediators: experimental research. Eur J Trauma Emerg Surg. 2022;12:1–9.

    Google Scholar 

  4. Farhangi Ghaleh Joughi N, Farahpour MR, Mohammadi M, Jafarirad S, Mahmazi S. Investigation on the antibacterial properties and rapid infected wound healing activity of Silver/Laterite/Chitosan nanocomposites. J Ind Eng Chem. 2022. https://doi.org/10.1016/j.jiec.2022.03.034.

    Article  Google Scholar 

  5. Rook JM, Hasan W, McCarson KE. Temporal effects of topical morphine application on cutaneous wound healing. Anesthesiology. 2008;109(1):130–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bigliardi PL, Dancik Y, Neumann C, Bigliardi-Qi M. Opioids and skin homeostasis, regeneration and ageing-what’s the evidence? Exp Dermatol. 2016;25(8):586–91.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Gupta M, Poonawala T, Farooqui M, Li Y, Peng F, Rao S, Ansonoff M, Pintar JE, Gupta K. Opioids and opioid receptors orchestrate wound repair. Transl Res. 2017;185(1):13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ondrovics M, Hoelbl-Kovacic A, Fux DA. Opioids: modulators of angiogenesis in wound healing and cancer. Oncotarget. 2017;8(15):25783–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dinda A, Gitman M, Singhal PC. Immunomodulatory effect of morphine: therapeutic implications. Expert Opin Drug Saf. 2005;4(4):669–75.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou J, Ma R, Jin Y, Fang J, Du J, Shao X, Liang Y, Fang J. Molecular mechanisms of opioid tolerance: from opioid receptors to inflammatory mediators. Exp Ther Med. 2021;22(3):1–8.

    Article  Google Scholar 

  11. Stein C, Kuchler S. Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci. 2013;34(6):303–12.

    Article  CAS  PubMed  Google Scholar 

  12. Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, Jiang MH, Kim JC, Son Y. A new role of substance P as an injury-inducible messenger for mobilization of CD29(1) stromal-like cells. Nat Med. 2009;15(4):425–35.

    Article  CAS  PubMed  Google Scholar 

  13. Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett. 2020;16:48–59.

    Article  Google Scholar 

  14. Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol. 2020;17(5):433–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ridiandries A, Tan J, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19(10):3217.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gupta M, Poonawala T, Farooqui M, Ericson M, Gupta K. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats. J Diabetes. 2015;7(4):573–83.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021;11(5):700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katerina I, Jennifer S, Susan H. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol. 2013;4:132–40.

    Google Scholar 

  21. Bhandari M, Bhandari A, Bhandari A. Recent updates on codeine. Pharm Methods. 2011;2(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. An DT, Hoang VD. Simultaneous determination of paracetamol and codeine phosphate in combined tablets by first-order derivative and ratio spectra first-order derivative UV spectrophotometry. Asian J Res Chem. 2009;2(2):143–7.

    CAS  Google Scholar 

  23. Long TD, Cathers TA, Twillman R, O’Donnell T, Garrigues N, Jones T. Morphine-Infused silver sulfadiazine (MISS) cream for burn analgesia: a pilot study. J Burn Care Rehabil. 2001;22(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  24. Tran QN, Fancher T. Achieving analgesia for painful ulcers using topically applied morphine gel. J Support Oncol. 2007;5:289–93.

    CAS  PubMed  Google Scholar 

  25. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. Plos Biol. 2010. https://doi.org/10.1371/journal.pbio.1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Manzoureh R, Farahpour MR. Topical administration of hydroethanolic extract of trifolium pratense (red clover) accelerates wound healing by apoptosis and re-epithelialization. Biotech Histochem. 2021;96(4):276–86.

    Article  CAS  PubMed  Google Scholar 

  27. Daghian SG, Farahpour MR, Jafarirad S. Biological fabrication and electrostatic attractions of new layered silver/talc nanocomposite using Lawsonia inermis L. and its chitosan-capped inorganic/organic hybrid: investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa infected wound healing. Mater Sci Eng C. 2021;128:112294.

    Article  CAS  Google Scholar 

  28. Gharehpapagh AC, Farahpour MR, Jafarirad S. The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus. Int J Biol Macromol. 2021;183:447–56.

    Article  Google Scholar 

  29. Pradhan L, Cai X, Wu S, Andersen ND, Martin M, Malek J, Guthrie P, Veves A, LoGerfo FW. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res. 2011;167(2):336–42.

    Article  CAS  PubMed  Google Scholar 

  30. Hesselink JM. Phenytoin repositioned in wound healing: clinical experience spanning 60 years. Drug Discov Today. 2018;23(2):402–8.

    Article  Google Scholar 

  31. Saddik MS, Alsharif FM, El-Mokhtar MA, Al-Hakkani MF, El-Mahdy MM, Farghaly HS, Abou-Taleb HA. Biosynthesis, characterization, and wound-healing activity of phenytoin-loaded copper nanoparticles. AAPS PharmSciTech. 2020;21(5):1–2.

    Article  Google Scholar 

  32. Stein C, Kuchler S. Non-analgesic effects of opioids: peripheral opioid effects on inflammation and wound healing. Curr Pharm Des. 2012;18(37):6053–69.

    Article  CAS  PubMed  Google Scholar 

  33. Demirci H, Kuzucu P, Seymen CM, Gülbahar Ö, Özişik P, Emmez H. The effect of antiepileptic drugs on re-myelinization of axons: phenytoin, levetiracetam, carbamazepine, and valproic acid, used following traumatic brain injury. Clin Neurol Neurosurg. 2021;209: 106911.

    Article  PubMed  Google Scholar 

  34. Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med. 2000;113(3):140–5.

    Article  CAS  PubMed  Google Scholar 

  35. Saleh K, Strömdahl AC, Riesbeck K, Schmidtchen A. Inflammation biomarkers and correlation to wound status after full-thickness skin grafting. Front Med. 2019;6:159.

    Article  Google Scholar 

  36. Modeer T, Domeij H, Anduren I, Mustafa M, Brunius G. Effect of phenytoin on the production of interleukin-6 and interleukin-8 in human gingival fibroblasts. J Oral Pathol Med. 2000;29(10):491–9.

    Article  CAS  PubMed  Google Scholar 

  37. Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care. 2020;9(4):184–98.

    Article  Google Scholar 

  38. Corrêa JD, Queiroz-Junior CM, Costa JE, Teixeira AL, Silva TA. Phenytoin-induced gingival overgrowth: a review of the molecular, immune, and inflammatory features. Int Sch Res. 2011. https://doi.org/10.5402/2011/497850.

    Article  Google Scholar 

  39. Kagawa M, Goda S, Matsumoto N. The effect of phenytoin on the matrix metalloprotease-3 production in HGFs. J Oral Tissue Eng. 2015;13(2):57–66.

    Google Scholar 

  40. Fattahi N, Abdolahi A, Vahabzadeh Z, Nikkhoo B, Manoochehri F, Goudarzzadeh S, Hassanzadeh K, Izadpanah E, Moloudi MR. Topical phenytoin administration accelerates the healing of acetic acid-induced colitis in rats: evaluation of transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor. Inflammopharmacology. 2022;13:1–8.

    Google Scholar 

  41. Tokgöz SA, Saka C, Akin I, Köybaşioğlu FF, Kilicaslan S, Çalişkan M, Beşalti Ö, Tatar EC. Effects of phenytoin injection on vocal cord healing after mechanical trauma: an experimental study. Turk J Med Sci. 2019. https://doi.org/10.3906/sag-1903-63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Charbaji N, Schäfer-Korting M, Küchler S. Morphine stimulates cell migration of oral epithelial cells by delta-opioid receptor activation. PLoS ONE. 2012;7(8): e42616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bigliardi PL, Dancik Y, Neumann C, Bigliardi-Qi M. Opioids and skin homeostasis, regeneration and ageing–what’s the evidence? Exp Dermatol. 2016;25(8):586–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was extracted from thesis of Zhila Mahmoudi in Veterinary Faculty of Islamic Azad University, Urmia Branch. The authors are grateful to Dr. Hamed Hamishehkar and Sara laboratory for performing laboratory evaluations. Moreover, we would like to extend my gratitude to the Board of Researcheditor.ir for providing the editorial services for scientists in Iran.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Farahpour.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, Z., Farahpour, M.R. Accelerated wound healing and its promoting effects of topical codeine on the healing of full-thickness cutaneous wound, evidences for modulating cytokines involved in pain, inflammation and collagen biosynthesis. Eur J Trauma Emerg Surg 48, 4735–4744 (2022). https://doi.org/10.1007/s00068-022-01999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-022-01999-8

Keywords

Navigation