Skip to main content

Advertisement

Log in

A multi-staged neuropeptide response to traumatic brain injury

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

As the most abundant neuropeptides in Central Nervous System, Substance P and Neuropeptide Y are arguably involved in the response to brain trauma. This study aims to characterize a new concept of multi-staged neuropeptide response to TBI.

Methods

This study assessed Substance P, Neuropeptide Y, S100B, standard inflammatory parameters and ionic disturbance in TBI victims, with and without intracranial lesions, and healthy controls. In the group with intracranial lesions, blood samples were drawn until 6 h after initial trauma, at 48 h and 7 days post-TBI.

Results

An early increase in Substance P (mean 613.463 ± 49.055 SE 6 h post-TBI with brain contusions vs. 441.441 ± 22.572 SE pg/dL control group) is evident. Concerning TBI without intraparenchymatous lesions, an increase in substance P is also present (825.60 ± 23.690 SE pg/dL). Following an initial increase and subsequent fall in NPY levels (45.997 ± 4.96 SE 6 h post-TBI vs. 32.395 ± 4.056 SE 48 h post-TBI vs. 19.700 ± 1.462 SE pg/mL control group), a late increase in NPY is obvious (43.268 ± 6.260 SE pg/mL 7 day post-TBI). Post-traumatic hypomagnesemia (0.754 ± 0.015 SE 6 h post-TBI vs. 0.897 ± 0.021 SE mmol/L control group) and a peak in S100B (95.668 ± 14.102 SE 6 h post-TBI vs. 30.187 ± 3.347 SE pg/mL control group) are also present.

Conclusion

A multi-staged neuropeptide response to TBI is obvious and represents a potential therapeutic strategy for the treatment of intraparenchymal lesions and cerebral edema following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

Supporting data can be accessed upon request.

References

  1. Fu T, Jing R, McFaull S, Cusimano M. Health & economic burden of traumatic brain injury in the emergency department. Can J Neurol Sci. 2016;43(2):238–47.

    PubMed  Google Scholar 

  2. Humphreys I, Wood R, Phillips C, Macey S. The costs of traumatic brain injury: a literature review. Clin Outcomes Res. 2013;26(5):281–7.

    Google Scholar 

  3. Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The role of neurogenic inflammation in blood-brain disruption and development of cerebral oedema following acute central nervous system injury. Int J Mol Sci. 2017;18(8).

  4. DeKosky ST, Asken BM. Injury cascades in TBI-related neurodegeneration. Brain Inj. 2017;31(9):1177–82.

    PubMed  PubMed Central  Google Scholar 

  5. Shandra O, Winemiller A, Heithoff B, et al. Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. J Neurosci. 2019;39(10):1944–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dobrachinski F, Gerbatin R, Sartori G, et al. Regulation of mitochondrial function and glutamatergic system are the target of guanosine effect in traumatic brain injury. J Neurotrauma. 2017;34(7):1318–28.

    PubMed  Google Scholar 

  7. Djordevic J, Sabbir MG, Albensi BC. Traumatic brain injury as a risk factor for alzheimer’s disease: is inflammatory signaling a key player? Curr Alzheimer Res. 2016;13(7):730–8.

    Google Scholar 

  8. Mouzon B, Chaytow H, Crynen G, et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma. 2012;29(18):2761–73.

    PubMed  Google Scholar 

  9. Croall I, Smith FE, Blamire AM. Magnetic resonance spectroscopy for traumatic brain injury. Top Magn Reson Imaging. 2015;24(5):267–74.

    PubMed  Google Scholar 

  10. Stovell MG, Yan JL, Sleigh A, et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications. Front Neurol. 2017;12(8):426.

    Google Scholar 

  11. Hoffman JR, Zuckerman A, Ram O, et al. Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with B-alanine. Aminoacids. 2017;49(5):871–86.

    CAS  Google Scholar 

  12. Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol. 2015;28:556–64.

    PubMed  PubMed Central  Google Scholar 

  13. Minkkinen M, Iverson GL, Kotilainen AK, et al. Prospective validation of the scandinavian guidelines for initial management of minimal, mild, and moderate head injuries in adults. J Neurotrauma. 2019;36(20):2904–12.

    PubMed  Google Scholar 

  14. Lorente L, Martín M, Almeida T, et al. Serum substance P levels are associated with severity and mortality in patients with severe traumatic brain injury. Crit Care. 2015;19:192.

    PubMed  PubMed Central  Google Scholar 

  15. Vink R, Den Heuvel C. Substance P antagonists as a therapeutic approach to improving outcome following traumatic brain injury. Neurotherapeutics. 2010;7(1):74–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lukacs M, Tajti J, Fulop F, Toldi J, Edvinsson L, Vecsei L. Migraine, neurogenic ınflammation, drug development - pharmacochemical aspects. Curr Med Chem. 2017;24(33):3649–65.

    CAS  PubMed  Google Scholar 

  17. Suvas S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. J Immunol. 2017;199(5):1543–52.

    CAS  PubMed  Google Scholar 

  18. Turner R, Vink R. The role of substance P in ischaemic brain injury. Brain Sci. 2013;3(1):123–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vink R, Gabrielian L, Thornton E. The role of substance P in secondary pathophysiology after traumatic brain injury. Front Neurol. 2017;8:304.

    PubMed  PubMed Central  Google Scholar 

  20. Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflamm. 2016;13(1):264.

    Google Scholar 

  21. Zhe Z, Hongyuan B, Wenjuan Q, Peng W, Xiaowei L, Yan G. Blockade of glutamate receptor ameliorates lipopolysaccharide-induced sepsis through regulation of neuropeptides. Biosci Rep. 2018;8(38):3.

    Google Scholar 

  22. Ameliorate JL, Ghabriel MN, Vink R. Magnesium enhances the beneficial effects of NK1 antagonist administration on blood-brain barrier permeability and motor outcome after traumatic brain injury. Magnes Res. 2017;30(3):88–97.

    CAS  PubMed  Google Scholar 

  23. Ramamoorthy P, Wang Q, Whim M. Cell type-dependent trafficking of neuropeptide Y-containing dense core granules in CNS neurons. J Neurosci. 2011;31(41):14783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynds R, Lyu C, Lyu GW, et al. Neuronal plasticity of trigeminal ganglia in mice following nerve injury. J Pain Res. 2017;9(10):349–57.

    Google Scholar 

  25. Silva AP, Xapelli S, Pinheiro PS, et al. Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. J Neurochem. 2005;93(1):163–70.

    CAS  PubMed  Google Scholar 

  26. Decressac M, Prestoz L, Veran J, Cantereau A, Jaber M, Gaillard A. Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice. Neurobiol Dis. 2009;34(3):441–9.

    CAS  PubMed  Google Scholar 

  27. Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci. 2015;16(9):85.

    Google Scholar 

  28. Spencer B, Potkar R, Metcalf J, et al. Systemic Central Nervous System (CNS)-targeted delivery of neuropeptide Y (NPY) reduces neurodegeneration and increases neural precursor cell proliferation in a mouse model of Alzheimer disease. J Biol Chem. 2016;291(4):1905–20.

    CAS  PubMed  Google Scholar 

  29. Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y. The appropriate marker for astrocytes: comparing the distribution and expression of three astrocytic markers in different mouse cerebral regions. Biomed Res Int. 2019;24:9605265.

    Google Scholar 

  30. Thelin E, Nimer F, Frostell A, et al. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J Neurotrauma. 2019;36(20):2850–62.

    PubMed  PubMed Central  Google Scholar 

  31. Frankel M, Fan L, Yeatts SD, et al. Association of very early serum levels of S100B, glial fibrillary acidic protein, ubiquitin C-terminal hydroxilase-L1 and spectrin breakdown roduct with outcome in proTECT III. J Neurotrauma. 2019;36(20):2863–71.

    PubMed  PubMed Central  Google Scholar 

  32. Mondello S, Sorinola A, Czeiter E, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J Neurotrauma. 2018. https://doi.org/10.1089/neu.2017.5182.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thelin E, Nelson D, Bellander BM. A review of the clinical utility of sérum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochirur. 2017;159:209–25.

    Google Scholar 

  34. Lim L, Ho RM, Ho C. Dangers of mixed martial arts in the development of chronic traumatic encephalopathy. Int J Environ Res Public Health. 2019;16(2):254.

    PubMed Central  Google Scholar 

  35. Donkin JJ, Cernak I, Blumbergs PC, Vink R. A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 h after traumatic brain injury. J Neurotrauma. 2011;28:217–24.

    PubMed  Google Scholar 

  36. Park M, Oh H, Ko I, et al. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats. J Exerc Rehabil. 2014;10(3):148–54.

    PubMed  PubMed Central  Google Scholar 

  37. Hellewell S, Semple B, Morganti-Kossmann M. Therapies negating neuroinflammation after brain trauma. Brain Res. 2016;1640:36–56.

    CAS  PubMed  Google Scholar 

  38. Dikranian K, Cohen R, Macdonald C, et al. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol. 2008;211(2):551–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ercole A, Thelin EP, Holst A, Bellander BM, Nelson D. Kinetic modelling of sérum S100B after traumatic brain injury. BMC Neurol. 2016;16:93.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leonard AV, Manavis J, Blumbergs PC, Vink R. Changes in substance P and NK1 receptor immunohistochemistry following human spinal cord injury. Spinal Cord. 2014;52(1):17–23.

    CAS  PubMed  Google Scholar 

  41. Giancarelli A, Birrer KL, Alban RF, Hobbs BP, Liu-deRyke X. Hypocalcemia in trauma patients receiving massive transfusion. J Surg Res. 2016;202(1):182–7.

    CAS  PubMed  Google Scholar 

  42. Naghibi T, Mohajeri M, Dobakhti F. Inflammation and outcome in traumatic brain injury: does gender effect on survival and prognosis? J Clin Diagn Res. 2017;11(2):6–9.

    Google Scholar 

  43. Alves JL, Rato J, Silva V. Why does brain trauma research fail? World Neurosurg. 2019;130:115–21.

    PubMed  Google Scholar 

  44. Sabban F, Vink R, Turner RJ. Inflammation in acute CNS injury: a focus on the role of substance P. Br J Pharmacol. 2016;173:703–15.

    Google Scholar 

  45. Zhang L, Bijker MS, Herzog H. The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and câncer. Pharmacol Ther. 2011;131(1):91–113.

    CAS  PubMed  Google Scholar 

  46. Sabban EL, Laukova M, Alaluf LG, Olsson E, Serova LI. Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y. J Neurochem. 2015;135(5):975–86.

    CAS  PubMed  Google Scholar 

  47. Kaniganti T, Deogade A, Maduskar A, Mukherjee A, Guru A, Subhedar N. Sensitivity of olfactory sensory neurons to food cues is tuned to nutritional states by neuropeptide Y signalling. BioRxiv. 2019. https://doi.org/10.1101/573170.

    Article  Google Scholar 

  48. Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol. 2013;243:4–20.

    PubMed  Google Scholar 

  49. Morosawa S, Iritani S, Fujishiro H, et al. Neuropeptide Y neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Neuropeptides. 2017;62:27–35.

    CAS  PubMed  Google Scholar 

  50. Angelucci F, Gelfo F, Fiore M, et al. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer’s disease. Can J Physiol Pharmacol. 2014;92(8):621–30.

    CAS  PubMed  Google Scholar 

  51. Markaki E, Ellul J, Kefalopoulou Z, et al. The role of ghrelin, neuropeptide Y and leptin peptides in weight gain after deep brain stimulation for Parkinson’s disease. Stereotact Funct Neurosurg. 2012;90(2):104–12.

    PubMed  Google Scholar 

  52. Uckermann O, Wolf A, Franziska K, Wiedemann P, Reichenbach A, Bringmann A. Neuropeptide Y inhibits hypotonic glial cell swelling in the postischemic rat retina via glutamatergic Neuron-to-Glia Signaling. Invest Ophtalmol Vis Sci. 2005;46:2224.

    Google Scholar 

  53. Sampaolo S, Liguori G, Vittoria A, et al. First study on the peptidergic innervation of the brain superior sagittal sinus in humans. Neuropeptides. 2017;65:45–55.

    CAS  PubMed  Google Scholar 

  54. Edyvane KA, Smet PJ, Trussell DC, Jonavicius J. Patterns of neuronal colocalisation of tyrosine hydroxylase, neuropeptide Y, vasoactive intestinal polypeptide, calcitonin gene-related peptide and substance P in human uréter. J Auton Nerv Syst. 1994;48(3):241–55.

    CAS  PubMed  Google Scholar 

  55. Nelson TS, Fu W, Donahue RR, et al. Facilitation of neuropathic pain by the NPY Y1 receptor-expressing subpopulation of excitatory interneurons in the dorsal horn. Sci Rep. 2019;10(9):7248.

    Google Scholar 

  56. Wang W, Xu T, Chen X, et al. NPY receptor 2 mediates NPY antidepressant effect in the mPFC of LPS rat by suppressing NLRP3 signaling pathway. Mediat Inflamm. 2019. https://doi.org/10.1155/2019/7898095.

    Article  Google Scholar 

  57. He XY, Dan QQ, Wang F, et al. Protein network analysis of the serum and their functional implication in patients subjected to traumatic brain injury. Front Neurosci. 2019;12:1049.

    PubMed  PubMed Central  Google Scholar 

  58. McIntosh TK, Ferriero D. Changes in neuropeptide Y after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab. 1992;12(4):697–702.

    CAS  PubMed  Google Scholar 

  59. Sun Z, Liu S, Kharmalov EA, Miler ER, Kelly KM. Hippocampal neuropeptide Y protein expression following controlled cortical impact and posttraumatic epilepsy. Epilepsy Behav. 2018;87:188–94.

    CAS  PubMed  Google Scholar 

  60. Chiodera P, Volpi R, Pilla S, Cataldo S, Coiro V. Decline in circulating neuropeptide Y levels in normal elderly human subjects. Eur J Endocrinol. 2000;143:715–6.

    CAS  PubMed  Google Scholar 

  61. Johnson V, Stewart J, Begbie F, Trojanowski J, Smith D, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28–422.

    PubMed  PubMed Central  Google Scholar 

  62. Fatoba O, Kloster E, Saft C, Gold R, Arning L, Ellrichmann G. L22 intranasal application of NPY and NPY13–36 ameliorate disease pathology in R6/2 mouse model of huntington’s disease. J Neurol Neurosurg Psychiatry. 2016;87:A97–A9898.

    Google Scholar 

  63. Sabban EL, Serova LI. Potential of intranasal neuropeptide Y (NPY) and/or melanocortin 4 receptor (MC4R) antagonists for preventing or treating PTSD. Mil Med. 2018;183(suppl1):408–12.

    PubMed  Google Scholar 

  64. Campbell D, Raftery N, Tustin R, et al. Measurement of plasma-derived substance P: biological, methodological, and statistical considerations. Clin Vaccine Immunol. 2006;13(11):1197–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Corbally N, Powell D, Tipton KF. The binding of endogenous and exogenous substance-P in human plasma. Biochem Pharmacol. 1990;39:1161–6.

    CAS  PubMed  Google Scholar 

  66. Szczygielski J, Glameanu C, Müller A, et al. Changes in posttraumatic brain edema in craniectomy-selective brain hypothermia model are associated with modulation of aquaporin-4 level. Front Neurol. 2018;9:799.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dra. Eulália Costa, for the technical support.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luís Alves.

Ethics declarations

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Research Committee (Centro Hospitalar e Universitário de Coimbra) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All authors have consented for the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.L., Mendes, J., Leitão, R. et al. A multi-staged neuropeptide response to traumatic brain injury. Eur J Trauma Emerg Surg 48, 507–517 (2022). https://doi.org/10.1007/s00068-020-01431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-020-01431-z

Keywords

Navigation