Skip to main content
Log in

Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis

  • Review Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

In previous studies, interleukin-6 (IL-6) has been shown to have a high predictive value for the development of complications and mortality after trauma; however, there is some uncertainty around these results. The aim of this meta-analysis was to assess the value of early IL-6 levels (within the first 24 h after trauma) for predicting post-traumatic complications [acute respiratory distress syndrome (ARDS), systemic inflammatory response syndrome (SIRS), sepsis, multiple organ failure (MOF), and multiple organ dysfunction syndrome (MODS)] and mortality.

Methods

A systemic literature review (from January 01, 1990, to June 03, 2017) of English-language articles was carried out using Pubmed, the Cochrane Central Register of Controlled Trials, Embase, and Web of Science. The search terms used were IL-6 (IL6, IL-6, interleukin 6, or interleukin-6); trauma (trauma*, polytrauma*, multitrauma*, injury, or injury severity score); complications (complication*, ARDS, SIRS, sepsis, MOF, or MODS); and mortality (survival, death). Eleven publications (775 patients) out of 1812 fulfilled the criteria. Fixed-effective models were used for data analysis. Statistical heterogeneity was estimated by a Chi-squared Q test and I 2 statistics, and publication bias was assessed with Egger’s test.

Results

Results showed that the concentrations of IL-6 within the first 24 h after trauma were significantly higher in the group of patients who had complications or who died [standardized mean difference (SMD) = 0.399; 95% confidence interval (CI) 0.217, 0.580; I 2 = 0.0%; P(heterogeneity) = 0.489]. Subgroup results showed a significant correlation for mortality [SMD = 0.610; 95% CI 0.322, 0.898; I 2 = 0.0%; P(heterogeneity) = 0.708] and MOF/MODS [SMD = 0.334; 95% CI 0.028, 0.639; I 2 = 0.0%; P(heterogeneity) = 0.512] with IL-6, but not for sepsis [SMD = 0.194; 95% CI − 0.095, 0.484; I 2 = 0.0%; P(heterogeneity) = 0.512]. Significance was also found in both ISS ≥ 9 [SMD = 0.461, 95% CI 0.131, 0.791, I 2 = 5.6%, P(heterogeneity) = 0.365] and ISS ≥ 16 [SMD = 0.372, 95% CI 0.155, 0.588, I 2 = 1.5%, P(heterogeneity) = 0.413].

Conclusion

In conclusion, this meta-analysis showed that serum concentration of IL-6 within the first 24 h after trauma could be useful for the prediction of post-traumatic complications, particularly MOF/MODS and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Osler T, Glance LG, Hosmer DW. Complication-associated mortality following trauma: a population-based observational study. Arch Surg (Chicago, Ill: 1960). 2012;147(2):152–8. https://doi.org/10.1001/archsurg.2011.888.

    Article  Google Scholar 

  2. Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M. Interleukin-6 in surgery, trauma, and critical care part II: clinical implications. J Intensive Care Med. 2011;26(2):73–87. https://doi.org/10.1177/0885066610395679.

    Article  PubMed  Google Scholar 

  3. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg (Chicago., Ill: 1960). 2000;135(3):291–5.

    Article  CAS  Google Scholar 

  4. Cuschieri J, Bulger E, Schaeffer V, Sakr S, Nathens AB, Hennessy L, et al. Early elevation in random plasma IL-6 after severe injury is associated with development of organ failure. Shock (Augusta Ga). 2010;34(4):346 – 51. https://doi.org/10.1097/SHK.0b013e3181d8e687.

    Article  CAS  Google Scholar 

  5. Partrick DA, Moore FA, Moore EE, Biffl WL, Sauaia A, Barnett CC. Jr. Jack A. Barney Resident Research Award winner. The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg. 1996;172(5):425–9 (discussed 9–31).

    Article  CAS  Google Scholar 

  6. Ciriello V, Gudipati S, Stavrou PZ, Kanakaris NK, Bellamy MC, Giannoudis PV. Biomarkers predicting sepsis in polytrauma patients: current evidence. Injury. 2013;44(12):1680–92. https://doi.org/10.1016/j.injury.2013.09.024.

    Article  PubMed  Google Scholar 

  7. Giannoudis PV, Smith MR, Evans RT, Bellamy MC, Guillou PJ. Serum CRP and IL-6 levels after trauma. Not predictive of septic complications in 31 patients. Acta Orthop Scand. 1998;69(2):184–8.

    Article  CAS  Google Scholar 

  8. Giamarellos-Bourboulis EJ, Mouktaroudi M, Tsaganos T, Koutoukas P, Spyridaki E, Pelekanou A, et al. Evidence for the participation of soluble triggering receptor expressed on myeloid cells-1 in the systemic inflammatory response syndrome after multiple trauma. J Trauma. 2008;65(6):1385–90. https://doi.org/10.1097/TA.0b013e31814699cc.

    Article  CAS  PubMed  Google Scholar 

  9. Dekker AB, Krijnen P, Schipper IB. Predictive value of cytokines for developing complications after polytrauma. World J Crit Care Med. 2016;5(3):187–200. https://doi.org/10.5492/wjccm.v5.i3.187.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Akkose S, Ozgurer A, Bulut M, Koksal O, Ozdemír F, Ozguç H. Relationships between markers of inflammation, severity of injury, and clinical outcomes in hemorrhagic shock. Adv Ther. 2007;24(5):955–62. https://doi.org/10.1007/BF02877699.

    Article  CAS  PubMed  Google Scholar 

  11. Jastrow KM 3rd, Gonzalez EA, McGuire MF, Suliburk JW, Kozar RA, Iyengar S, et al. Early cytokine production risk stratifies trauma patients for multiple organ failure. J Am Coll Surg. 2009;209(3):320–31. https://doi.org/10.1016/j.jamcollsurg.2009.05.002.

    Article  PubMed  Google Scholar 

  12. Bogner V, Keil L, Kanz KG, Kirchhoff C, Leidel BA, Mutschler W, et al. Very early posttraumatic serum alterations are significantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients. Eur J Med Res. 2009;14(7):284–91.

    Article  CAS  Google Scholar 

  13. Yagmur Y, Ozturk H, Unaldi M, Gedik E. Relation between severity of injury and the early activation of interleukins in multiple-injured patients. Eur Surg Res. 2005;37(6):360–4. https://doi.org/10.1159/000090337.

    Article  CAS  PubMed  Google Scholar 

  14. Haasper C, Kalmbach M, Dikos GD, Meller R, Muller C, Krettek C, et al. Prognostic value of procalcitonin (PCT) and/or interleukin-6 (IL-6) plasma levels after multiple trauma for the development of multi organ dysfunction syndrome (MODS) or sepsis. Technol Health Care. 2010;18(2):89–100. https://doi.org/10.3233/thc-2010-0571.

    Article  CAS  PubMed  Google Scholar 

  15. Maier B, Lefering R, Lehnert M, Laurer HL, Steudel WI, Neugebauer EA, et al. Early versus late onset of multiple organ failure is associated with differing patterns of plasma cytokine biomarker expression and outcome after severe trauma. Shock (Augusta Ga). 2007;28(6):668–74.

    CAS  Google Scholar 

  16. Tranca S, Oever JT, Ciuce C, Netea M, Slavcovici A, Petrisor C, et al. sTREM-1, sIL-2Ralpha, and IL-6, but not sCD163, might predict sepsis in polytrauma patients: a prospective cohort study. Eur J Trauma Emerg Surg. 2016. https://doi.org/10.1007/s00068-016-0678-1.

    Article  PubMed  Google Scholar 

  17. Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimirovic B. Predicting multiple organ failure in patients with severe trauma. Can J Surg Journal canadien de chirurgie. 2008;51(2):97–102.

    PubMed  Google Scholar 

  18. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55.

    Article  CAS  Google Scholar 

  19. Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrere JS. Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg (Chicago., Ill: 1960). 1985;120(10):1109–15.

    Article  CAS  Google Scholar 

  20. Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40(4):501–10 (discussion 10–2).

    Article  Google Scholar 

  21. Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.

    Article  CAS  Google Scholar 

  22. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–24. https://doi.org/10.1164/ajrccm.149.3.7509706.

    Article  CAS  Google Scholar 

  23. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621–36.

    Article  CAS  Google Scholar 

  24. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24(1):25–9.

    Article  CAS  Google Scholar 

  25. Giannoudis PV, Hildebrand F, Pape HC. Inflammatory serum markers in patients with multiple trauma. Can they predict outcome? J Bone Jt Surg (British volume). 2004;86(3):313–23.

    Article  CAS  Google Scholar 

  26. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8(8):959–70. https://doi.org/10.2217/imt-2016-0020.

    Article  CAS  PubMed  Google Scholar 

  27. Lustenberger T, Kern M, Relja B, Wutzler S, Stormann P, Marzi I. The effect of brain injury on the inflammatory response following severe trauma. Immunobiology. 2016;221(3):427–31. https://doi.org/10.1016/j.imbio.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  28. Mors K, Braun O, Wagner N, Auner B, Voth M, Stormann P, et al. Influence of gender on systemic IL-6 levels, complication rates and outcome after major trauma. Immunobiology. 2016;221(8):904–10. https://doi.org/10.1016/j.imbio.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  29. Winfield RD, Delano MJ, Cuenca AG, Cendan JC, Lottenberg L, Efron PA, et al. Obese patients show a depressed cytokine profile following severe blunt injury. Shock (Augusta Ga). 2012;37(3):253–6. https://doi.org/10.1097/SHK.0b013e3182449c0e.

    Article  CAS  Google Scholar 

  30. Relja B, Menke J, Wagner N, Auner B, Voth M, Nau C, et al. Effects of positive blood alcohol concentration on outcome and systemic interleukin-6 in major trauma patients. Injury. 2016;47(3):640–5. https://doi.org/10.1016/j.injury.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  31. Tschoeke SK, Hellmuth M, Hostmann A, Ertel W, Oberholzer A. The early second hit in trauma management augments the proinflammatory immune response to multiple injuries. J Trauma. 2007;62(6):1396–403 (discussion 403–4). https://doi.org/10.1097/TA.0b013e318047b7f0.

    Article  Google Scholar 

  32. Husebye EE, Lyberg T, Opdahl H, Aspelin T, Stoen RO, Madsen JE, et al. Intramedullary nailing of femoral shaft fractures in polytraumatized patients. A longitudinal, prospective and observational study of the procedure-related impact on cardiopulmonary- and inflammatory responses. Scand J Trauma Resusc Emerg Med. 2012;20:2. https://doi.org/10.1186/1757-7241-20-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. LaPar DJ, Rosenberger LH, Walters DM, Hedrick TL, Swenson BR, Young JS, et al. Severe traumatic head injury affects systemic cytokine expression. J Am Coll Surg. 2012;214(4):478–86 (discussion 86–8). https://doi.org/10.1016/j.jamcollsurg.2011.12.015.

    Article  Google Scholar 

  34. Hager P, Permert J, Wikstrom AC, Herrington MK, Ostenson CG, Strommer L. Preoperative glucocorticoid administration attenuates the systemic stress response and hyperglycemia after surgical trauma in the rat. Metabolism. 2009;58(4):449–55. https://doi.org/10.1016/j.metabol.2008.10.021.

    Article  CAS  PubMed  Google Scholar 

  35. Frink M, van Griensven M, Kobbe P, Brin T, Zeckey C, Vaske B, et al. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand J Trauma Resusc Emerg Med. 2009;17:49. https://doi.org/10.1186/1757-7241-17-49.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paunel-Gorgulu A, Flohe S, Scholz M, Windolf J, Logters T. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Crit Care (London, England). 2011;15(1):R20. https://doi.org/10.1186/cc9965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Qiao.

Ethics declarations

Conflict of interest

Zhi Qiao is supported by the China Scholarship council (no. 201508080049). Weikang Wang, Luxu Yin, Peng Luo, Johannes Greven, Klemens Horst, and Frank Hildebrand declare that they have no conflict of interest.

Ethical standards

This analysis collected secondary data, and no ethics committee approval was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Wang, W., Yin, L. et al. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis. Eur J Trauma Emerg Surg 44, 679–687 (2018). https://doi.org/10.1007/s00068-017-0880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-017-0880-9

Keywords

Navigation