Skip to main content
Log in

Rectal retractor application during image-guided dose-escalated prostate radiotherapy

Verwendung des Mastdarmretraktors während der bildgeführten dosiseskalierten Strahlentherapie der Prostata

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To investigate efficacy of a rectal retractor (RR) on rectal dose during image-guided dose-escalated prostate three-dimensional conformal radiotherapy (3DCRT).

Patients and methods

In all, 21 patients with localized prostate cancer were treated with a RR for 3DCRT in 40 × 2 Gy. Patient underwent two scans for radiotherapy planning, without and with RR. RR was used for the first half of the treatment sessions. Two plans were created for each patient to compare the effect of RR on rectal doses. PTW-31014 Pinpoint chamber embedded within RR was used for in vivo dosimetry in 6 of 21 patients. The patient tolerance and acute rectal toxicity were surveyed during radiotherapy using Common Terminology Criteria for Adverse Events (CTCAE) v.4.0.

Results

Patients tolerated the RR well during 20 fractions with mild degree of anal irritation. Using a RR significantly reduced the rectal wall (RW), anterior RW and posterior RW dose–volume parameters. The average RW Dmean was 29.4 and 43.0 Gy for plans with and without RR, respectively. The mean discrepancy between the measured dose and planned dose was −3.8% (±4.9%). Grade 1 diarrhea, rectal urgency and proctitis occurred in 4, 2 and 3 cases, respectively. There were no grade ≥2 acute rectal toxicities during the treatment.

Conclusion

Rectal retraction resulted in a significant reduction of rectal doses with a safe toxicity profile, which may reduce rectal toxicity. Dosimeter inserted into the RR providing a practical method for in vivo dosimetric verification. Further prospective clinical studies will be necessary to demonstrate the clinical advantage of RR.

Zusammenfassung

Zielsetzung

Beurteilung der Wirkung des Mastdarmretraktors (RR) auf die Rektaldosis bei der bildgeführten dosiseskalierten dreidimensionalen (3-D) konformalen Strahlentherapie (3DCRT) der Prostata.

Patienten und Methoden

Insgesamt wurden 21 Patienten mit lokalisiertem Prostatakrebs mit dem RR für die 3DCRT mit einer Dosis von 40 × 2 Gy behandelt. Im Behandlungsverfahren wurden an den Patienten zwei Arten von CT-Scans durchgeführt: mit RR und ohne RR. Für die ersten 20 Sitzungen wurde ein RR verwendet. Für jeden Patienten wurden zwei Pläne erstellt, um die Wirkung des RR auf die Rektaldosis zu vergleichen. Die Pinpoint-Kammer vom Typ 31014, die in den RR eingebettet war, wurde für die In-vivo-Dosimetrie bei 6 von 21 Patienten verwendet. Die Duldsamkeit der Patienten und die Toxizität des Rektums während der Strahlentherapie wurden anhand der Common Terminology Criteria for Adverse Events (CTCAE) v.4.0. bewertet.

Ergebnisse

Patienten konnten die Behandlung mit RR für 20 Sitzungen mit einem brennenden Gefühl im Analbereich tolerieren. Die Verwendung des RR reduziert die Dosis-Volumen-Parameter in der Rektalwand (RW), der vorderen RW und der hinteren RW. Die durchschnittliche Dosis von RW Dmean in den Plänen mit RR und ohne RR war jeweils 29,4 Gy und 43,0 Gy. Die durchschnittliche Differenz zwischen der gemessenen Dosis und der geplanten Dosis war −3,8% (±4,9%). Klasse-1-Durchfall, rektale Dringlichkeit und Proktitis traten bei 4, 2 bzw. 3 Patienten auf. Die akute rektale Toxizität während der Behandlung war nicht höher als Grad 2 (≥2).

Schlussfolgerung

Ein RR führt zu einer signifikanten Reduktion der Rektaldosen mit einem sicheren Toxizitätsprofil, das die Rektaltoxizität verringern kann. Die erwähnte Dosimetrie des RR stellt ein angewandtes Verfahren für In-vivo-Dosimetrietests bereit. Weitere prospektive klinische Studien sind erforderlich, um die klinischen Vorteile des RR zu beweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pollack A, Zagars GK, Starkschall G, Antolak JA, Lee JJ, Huang E et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Article  Google Scholar 

  2. Kuban D, Pollack A, Huang E, Levy L, Dong L, Starkschall G et al (2003) Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 57:1260–1268

    Article  Google Scholar 

  3. Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X et al (2012) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84:125–129

    Article  Google Scholar 

  4. Jones BL, Gan G, Diot Q, Kavanagh B, Timmerman RD, Miften M (2012) Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon. Med Phys 39:3080–3088

    Article  Google Scholar 

  5. Nilsson K, Johansson AK, Montelius A, Turesson I, Heikkinen RO, Ljung G et al (2014) Decreasing the dose to the rectal wall by using a rectal retractor during radiotherapy of prostate cancer: a comparative treatment planning study. J Radiother. https://doi.org/10.1155/2014/680205

    Article  Google Scholar 

  6. Isacsson U, Nilsson K, Asplund S, Morhed E, Montelius A, Turesson I (2010) A method to separate the rectum from the prostate during proton beam radiotherapy of prostate cancer patients. Acta Oncol 49:500–505

    Article  Google Scholar 

  7. Nicolae A, Davidson M, Easton H, Helou J, Musunuru H, Loblaw A et al (2015) Clinical evaluation of an endorectal immobilization system for use in prostate hypofractionated Stereotactic Ablative Body Radiotherapy (SABR). Radiat Oncol 10:122

    Article  Google Scholar 

  8. Boehmer D, Kuczer D, Badakhshi H, Stiefel S, Kuschke W, Wernecke KD et al (2006) Influence of organ at risk definition on rectal dose-volume histograms in patients with prostate cancer undergoing external-beam radiotherapy. Strahlenther Onkol 182:277–282

    Article  Google Scholar 

  9. Guckenberger M, Pohl F, Baier K, Meyer J, Koelbl O, Flentje M et al (2006) Influence of rectum delineation (rectal volume vs. rectal wall) on IMRT treatment planning of the prostate. Strahlenther Onkol 182:721–726

    Article  Google Scholar 

  10. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 76:S123–S129

    Article  Google Scholar 

  11. Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21:123–135

    Article  CAS  Google Scholar 

  12. Gulliford SL, Partridge M, Sydes MR, Webb S, Evans PM, Dearnaley DP (2012) Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise. Radiother Oncol 102:347–351

    Article  Google Scholar 

  13. Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, Lim Joon D et al (2016) RADBIOMOD: a simple program for utilising biological modelling in radiotherapy plan evaluation. Phys Med 32:248–254

    Article  Google Scholar 

  14. Vargas C, Martinez A, Kestin LL, Yan D, Grills I, Brabbins DS et al (2005) Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int J Radiat Oncol Biol Phys 62:1297–1308

    Article  Google Scholar 

  15. Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I et al (2002) Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 54:1314–1321

    Article  Google Scholar 

  16. Storey MR, Pollack A, Zagars G, Smith L, Antolak J, Rosen I (2000) Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys 48:635–642

    Article  CAS  Google Scholar 

  17. Skwarchuk MW, Jackson A, Zelefsky MJ et al (2000) Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response. Int J Radiat Oncol Biol Phys 47:103–113

    Article  CAS  Google Scholar 

  18. Skwarchuk MW, Travis EL (1998) Volume effects and epithelial regeneration in irradiated mouse colorectum. Radiat Res 149:1–10

    Article  CAS  Google Scholar 

  19. Cho JH, Lee CG, Kang DR, Kim J, Lee S, Suh CO et al (2009) Positional reproducibility and effects of a rectal balloon in prostate cancer radiotherapy. J Korean Med Sci 24:894–903

    Article  Google Scholar 

  20. van Lin EN, Hoffmann AL, van Kollenburg P, Leer JW, Visser AG (2005) Rectal wall sparing effect of three different endorectal balloons in 3D conformal and IMRT prostate radiotherapy. Int J Radiat Oncol Biol Phys 63:565–576

    Article  Google Scholar 

  21. Weber DC, Zilli T, Vallee JP, Rouzaud M, Miralbell R, Cozzi L (2012) Intensity modulated proton and photon therapy for early prostate cancer with or without transperineal injection of a polyethylen glycol spacer: a treatment planning comparison study. Int J Radiat Oncol Biol Phys 84:e311–e318

    Article  Google Scholar 

  22. Pinkawa M, Corral NE, Caffaro M, Piroth MD, Holy R, Djukic V et al (2011) Application of a spacer gel to optimize three-dimensional conformal and intensity modulated radiotherapy for prostate cancer. Radiother Oncol 100:436–441

    Article  CAS  Google Scholar 

  23. Jones BL, Gan G, Kavanagh B, Miften M (2013) Effect of endorectal balloon positioning errors on target deformation and dosimetric quality during prostate SBRT. Phys Med Biol 58:7995–8006

    Article  Google Scholar 

  24. Elsayed H, Bolling T, Moustakis C, Muller SB, Schuller P, Ernst I et al (2007) Organ movements and dose exposures in teletherapy of prostate cancer using a rectal balloon. Strahlenther Onkol 183:617–624

    Article  Google Scholar 

  25. Smeenk RJ, Louwe RJ, Langen KM, Shah AP, Kupelian PA, van Lin EN et al (2012) An endorectal balloon reduces intrafraction prostate motion during radiotherapy. Int J Radiat Oncol Biol Phys 83:661–669

    Article  Google Scholar 

  26. Wolf F, Gaisberger C, Ziegler I, Krenn E, Scherer P, Hruby S et al (2015) Comparison of two different rectal spacers in prostate cancer external beam radiotherapy in terms of rectal sparing and volume consistency. Radiother Oncol 116:221–225

    Article  Google Scholar 

  27. Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T (2016) SpaceOAR Hydrogel in Dose-escalated Prostate Cancer Radiotherapy: Rectal Dosimetry and Late Toxicity. Clin Oncol (r Coll Radiol) 28:e148–e154

    Article  CAS  Google Scholar 

  28. Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D et al (2015) Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 92:971–977

    Article  Google Scholar 

  29. Jones RT, Rezaeian HN, Desai NB, Lotan Y, Jia X, Hannan R et al (2017) Dosimetric comparison of rectal-sparing capabilities of rectal balloon vs injectable spacer gel in stereotactic body radiation therapy for prostate cancer: lessons learned from prospective trials. Med Dosim 42:341–347

    Article  Google Scholar 

  30. Vanneste BG, Hoffmann AL, van Lin EN, Van De Voorde L, Pinkawa M, Lambin P (2016) Who will benefit most from hydrogel rectum spacer implantation in prostate cancer radiotherapy? A model-based approach for patient selection. Radiother Oncol 121(1):118–123

    Article  Google Scholar 

  31. Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129

    Article  Google Scholar 

  32. Legge K, Nguyen D, Ng JA, Wilton L, Richardson M, Booth J et al (2017) Real-time intrafraction prostate motion during linac based stereotactic radiotherapy with rectal displacement. J Appl Clin Med Phys 18:130–136

    Article  Google Scholar 

  33. Jeang EH, Min S, Cho KH, Hwang UJ, Choi SH, Kwak J et al (2016) Two-dimensional in vivo rectal dosimetry using an endorectal balloon with unfoldable radiochromic film during prostate cancer radiotherapy. Radiother Oncol 120:327–332

    Article  Google Scholar 

  34. Wootton L, Kudchadker R, Lee A, Beddar S (2014) Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer. Phys Med Biol 59:647–660

    Article  Google Scholar 

  35. Kan MW, Leung LH, Yu PK (2012) Verification and dosimetric impact of Acuros XB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma. Med Phys 39:4705–4714

    Article  Google Scholar 

  36. Kwan IS, Wilkinson D, Cutajar D, Lerch M, Rosenfeld A, Howie A et al (2009) The effect of rectal heterogeneity on wall dose in high dose rate brachytherapy. Med Phys 36:224–232

    Article  CAS  Google Scholar 

  37. Ian K, Andrew H, Michael L, Bongsoo L, Chin YS, Bucci J et al (2014) Measurement of rectal dose during HDR Brachytherapy using the new MOskinDosimeter. J Nucl Sci Technol 45:481–484

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the staff of the Roshana Radiation Oncology Center (Tehran, Iran). This study was granted by research chancellor of Iran University of Medical Sciences, Tehran, Iran.

Funding

This study has received funding by Iran University of Medical Sciences, Tehran, Iran (grant number 97-01-30-32988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Ghaffari MSc.

Ethics declarations

Conflict of interest

S.R. Mahdavi, H. Ghaffari, B. Mofid, A. Rostami, R. Reiazi and L. Janani declare that they have no competing interests.

Ethical standards

This study involved human participants, and it was conducted considering ethic responsibilities according to the World Medical Association and the Declaration of Helsinki. The study was approved by the ethics committee of Iran University of Medical Sciences, Tehran, Iran. Ethics No. is IR.IUMS.FMD.REC.1396.9411338003. Informed consent was obtained from all individual participants prior to their inclusion in the study.

Additional information

Rabi Mahdavi and Hamed Ghaffari contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, S.R., Ghaffari, H., Mofid, B. et al. Rectal retractor application during image-guided dose-escalated prostate radiotherapy. Strahlenther Onkol 195, 923–933 (2019). https://doi.org/10.1007/s00066-019-01445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01445-6

Keywords

Schlüsselwörter

Navigation