Skip to main content
Log in

Radiation-induced acute dysphagia

Prospective observational study on 42 head and neck cancer patients

Strahleninduzierte akute Dysphagie

Prospektive Beobachtungsstudie an 42 Kopf-Hals-Malignompatienten

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Acute toxicity in head and neck (H&N) cancer patients treated with definitive radiotherapy (RT) has a crucial role in compliance to treatments. The aim of this study was to correlate doses to swallowing-associated structures and acute dysphagia.

Methods

We prospectively analyzed 42 H&N cancer patients treated with RT. Dysphagia (grade ≥ 3) and indication for percutaneous endoscopic gastrostomy (PEG) insertion were classified as acute toxicity. Ten swallowing-related structures were considered for the dosimetric analysis. The correlation between clinical information and the dose absorbed by the contoured structures was analyzed. Multivariate logistic regression method using resampling methods (bootstrapping) was applied to select model order and parameters for normal tissue complication probability (NTCP) modelling.

Results

A strong multiple correlation between dosimetric parameters was found. A two-variable model was suggested as the optimal order by bootstrap method. The optimal model (Rs = 0.452, p < 0.001) includes V45 of the cervical esophagus (odds ratio [OR] = 1.016) and Dmean of the cricopharyngeal muscle (OR = 1.057). The model area under the curve was 0.82 (95% confidence interval 0.69–0.95).

Conclusion

Our results suggested that the absorbed dose to the cricopharyngeal muscle and cervical esophagus might play a relevant role in the development of acute RT-related dysphagia.

Zusammenfassung

Hintergrund und Ziel

Bei Kopf-Hals-Tumorpatienten, die mit einer kurativen Strahlentherapie („radiation therapy“, RT) behandelt werden, spielt die Akuttoxizität eine entscheidende Rolle für die Patientencompliance bei der Behandlung. Ziel dieser Studie war es, die Dosen im Bereich des Schluckapparates mit der akuten Dysphagie zu korrelieren.

Material und Methodik

Prospektiv analysiert wurden 42 mit einer RT behandelten Patienten. Eine Dysphagie III und/oder die Indikation für eine PEG(perkutane endoskopische Gastrostomie)-Anlage wurden als Akuttoxizität klassifiziert. Für die dosimetrische Analyse wurden 10 am Schluckvorgang beteiligte Strukturen berücksichtigt. Analysiert wurde die Korrelation zwischen klinischer Information und der von den konturierten Strukturen absorbierten Dosis. Um die Modellreihenfolge und die Parameter für die NTCP(Normal Tissue Complication Probability)-Modellierung auszuwählen, wurde die multivariate logistische Regressionsmethode mit Resampling-Methoden (Bootstrapping) angewendet.

Ergebnisse

Es fand sich eine starke Mehrfachkorrelation zwischen dosimetrischen Parametern. Ein zweidimensionales Modell wurde als optimale Reihenfolge durch die Bootstrap-Methode vorgeschlagen. Das optimale Modell („Spearman’s rank correlation coefficient“, Rs = 0,452; p < 0,001) umfasst V45 des zervikalen Ösophagus (OR, Odds Ratio, = 1,016) und Dmean des M. cricopharyngeus (OR = 1,057). Das Modell-AUC („area under the curve”) betrug 0,82 (95 %-Konfidenzintervall 0,69–0,95).

Schlussfolgerung

Unsere Ergebnisse deuten darauf hin, dass die absorbierte Dosis im M. cricopharyngeus und im zervikalen Ösophagus eine wichtige Rolle bei der radiogenen akuten Dysphagie spielt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beer KT, Krause KB, Zuercher T et al (2005) Early percutaneous endoscopic gastrostomy insertion maintains nutritional state in patients with aerodigestive tract cancer. Nutr Cancer 52(1):29–34

    Article  PubMed  Google Scholar 

  2. Mekhail TM, Adelstein DJ, Rybicki LA et al (2001) Enteral nutrition during the treatment of head and neck carcinoma: is a percutaneous endoscopic gastrostomy tube preferable to a nasogastric tube? Cancer 91(9):1785–1790

    Article  CAS  PubMed  Google Scholar 

  3. Carroll WR, Locher JL, Canon CL et al (2008) Pretreatment swallowing exercises improve swallow function after chemoradiation. Laryngoscope 118(1):39–43

    Article  PubMed  Google Scholar 

  4. Rosenthal DI, Lewin JS, Eisbruch A (2006) Prevention and treatment of dysphagia and aspiration after chemoradiation for head and neck cancer. J Clin Oncol 24(17):2636–2643

    Article  PubMed  Google Scholar 

  5. Tang Y, Shen Q, Wang Y, Lu K, Wang Y, Peng Y (2011) A randomized prospective study of rehabilitation therapy in the treatment of radiation-induced dysphagia and trismus. Strahlenther Onkol 187(1):39–44

    Article  CAS  PubMed  Google Scholar 

  6. Langius JA, Zandbergen MC, Eerenstein SE et al (2013) Effect of nutritional interventions on nutritional status, quality of life and mortality in patients with head and neck cancer receiving (chemo)radiotherapy: a systematic review. Clin Nutr 32(5):671–678

    Article  PubMed  Google Scholar 

  7. Wiggenraad RGJ, Flierman L, Goossens A et al (2007) Prophylactic gastrostomy placement and early tube feeding may limit loss of weight during chemoradiotherapy for advanced head and neck cancer, a preliminary study. Clin Otolaryngol 32(5):384–390

    Article  CAS  PubMed  Google Scholar 

  8. Siddiqi AM, Hamilton RD, Minocha A (2008) Malignant seeding of percutaneous endoscopic gastrostomy tract in patient with head and neck cancer. Am J Med Sci 336(3):291–292

    Article  PubMed  Google Scholar 

  9. Chen AM, Li BQ, Lau DH et al (2010) Evaluating the role of prophylactic gastrostomy tube placement prior to definitive chemoradiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 78(4):1026–1032

    Article  PubMed  Google Scholar 

  10. Rao N, Gunn B, Endres E et al (2008) Dosimetric predictors of PEG Tube dependency in oropharyngeal carcinoma after exclusive IMRT. Int J Radiat Oncol Biol Phys 72(1):2512

    Google Scholar 

  11. Caudell JJ, Schaner PE, Desmond RA et al (2010) Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 76(2):403–409

    Article  PubMed  Google Scholar 

  12. Caglar HB, Tishler RB, Othus M et al (2008) Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 72(4):1110–1118

    Article  PubMed  Google Scholar 

  13. Jensen K, Lambertsen K, Grau C (2007) Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol 85(1):74–82

    Article  PubMed  Google Scholar 

  14. Feng FY, Kim HM, Lyden TH et al (2007) Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 68(5):1289–1298

    Article  PubMed  Google Scholar 

  15. Li B, Li D, Lau DH, Farwell DG et al (2009) Clinical-dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat Oncol 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schwartz DL, Hutcheson K, Barringer D et al (2010) Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78(5):1356–1365

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eisbruch A, Kim HM, Feng FY et al (2011) Chemo-IMRT of oropharyngeal cancer aiming to reduce dysphagia: swallowing organs late complication probabilities and dosimetric correlates. Int J Radiat Oncol Biol Phys 81(3):e93–9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dirix P, Abbeel S, Vanstraelen B et al (2009) Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 75(2):385–392

    Article  CAS  PubMed  Google Scholar 

  19. Christianen ME, van der Schaaf A, van der Laan HP et al (2016) Swallowing sparing intensity modulated radiotherapy (SW-IMRT) in head and neck cancer: Clinical validation according to the model-based approach. Radiother Oncol 118(2):298–303

    Article  PubMed  Google Scholar 

  20. Deantonio L, Masini L, Brambilla M et al (2013) Dysphagia after definitive radiotherapy for head and neck cancer. Correlation of dose-volume parameters of the pharyngeal constrictor muscles. Strahlenther Onkol 189(3):230–236

    Article  CAS  PubMed  Google Scholar 

  21. Levendag PC, Teguh DN, Voet P et al (2007) Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose-effect relationship. Radiother Oncol 85(1):64–73

    Article  PubMed  Google Scholar 

  22. Wopken K, Bijl HP, van der Schaaf A et al (2014) Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer. Radiother Oncol 113(1):95–101

    Article  PubMed  Google Scholar 

  23. Mazzola R, Ricchetti F, Fiorentino A et al (2014) Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment. Br J Radiol 87(1044):20140543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanguineti G, Gunn GB, Parker BC et al (2011) Weekly dose-volume parameters of mucosa and constrictor muscles predict the use of percutaneous endoscopic gastrostomy during exclusive intensity-modulated radiotherapy for oropharyngeal cancer. Int J Radiat Oncol Biol Phys 79(1):52–59

    Article  PubMed  Google Scholar 

  25. Werbrouck J, De Ruyck K, Duprez F et al (2009) Acute normal tissue reactions in head-and-neck cancer patients treated with imrt: influence of dose and association with genetic polymorphisms in dna dsb repair genes. Int J Radiat Oncol Biol Phys 73(4):1187–1195

    Article  CAS  PubMed  Google Scholar 

  26. Kondrup J, Rasmussen HH, Hamberg O et al (2003) Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 22(3):321–336

    Article  PubMed  Google Scholar 

  27. National Cancer Institute (2010) Common terminology criteria for adverse events (CTCAE) and common toxicity criteria (CTC): common terminology criteria for adverse events (CTCAE) v4.03. http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf. Accessed: 1. Sept. 2017

    Google Scholar 

  28. Sanguineti G, Adapala P, Endres EJ et al (2007) Dosimetric predictors of laryngeal edema. Int J Radiat Oncol Biol Phys 68(3):741–749

    Article  PubMed  Google Scholar 

  29. Dirix P, Nuyts S (2010) Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol 11(1):85–91

    Article  PubMed  Google Scholar 

  30. Christianen ME, Langendijk JA, Westerlaan HE et al (2011) Delineation of organs at risk involved in swallowing for radiotherapy treatment. Radiother Oncol 101(3):394–402

    Article  PubMed  Google Scholar 

  31. Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30(5):979–985

    Article  PubMed  Google Scholar 

  32. Cella L, D’Avino V, Palma G et al (2015) Modeling the risk of radiation-induced lung fibrosis: irradiated heart tissue is as important as irradiated lung. Radiother Oncol 117(1):36–43

    Article  PubMed  Google Scholar 

  33. Jackson A, Yorke ED, Rosenzweig KE (2006) The atlas of complication incidence: a proposal for a new standard for reporting the results of radiotherapy protocols. Semin Radiat Oncol 16(4):260–268

    Article  PubMed  Google Scholar 

  34. El Naqa I, Suneja G, Lindsay PE et al (2006) Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol 51:5719–5735

    Article  PubMed  Google Scholar 

  35. Cella L, Liuzzi R, Conson M et al (2013) Multivariate normal tissue complication probability modeling of heart valve dysfunction in Hodgkin lymphoma survivors. Int J Radiat Oncol Biol Phys 87(2):304–310

    Article  PubMed  Google Scholar 

  36. AJCC – American Joint Committee on Cancer. https://cancerstaging.org/Pages/default.aspx. Accessed: 1. Sept. 2017

  37. Italian Association of Radiation Oncology, Merlotti A, Alterio D, Vigna-Taglianti R et al (2014) Technical guidelines for head and neck cancer IMRT on behalf of the Italian association of radiation oncology – head and neck working group. Radiat Oncol 9:264

    Article  Google Scholar 

  38. Ricchetti F, Wu B, McNutt T et al (2011) Volumetric change of selected organs at risk during IMRT for oropharyngeal cancer. Int J Radiat Oncol Biol Phys 80(1):161–168

    Article  PubMed  Google Scholar 

  39. Langendijk JA, Doornaert P, Rietveld DH et al (2009) A predictive model for swallowing dysfunction after curative radiotherapy in head and neck cancer. Radiother Oncol 90(2):189–195

    Article  PubMed  Google Scholar 

  40. Mortensen HR, Overgaard J, Jensen K et al (2013) Factors associated with acute and late dysphagia in the DAHANCA 6 & 7 randomized trial with accelerated radiotherapy for head and neck cancer. Acta Oncol 52(7):1535–1542

    Article  PubMed  Google Scholar 

  41. Otter S, Schick U, Gulliford S, Lal P et al (2015) Evaluation of the risk of grade 3 oral and pharyngeal dysphagia using atlas-based method and multivariate analyses of individual patient dose distributions. Int J Radiat Oncol Biol Phys 93(3):507–515

    Article  PubMed  Google Scholar 

  42. De Ruyck K, Duprez F, Werbrouck J et al (2013) A predictive model for dysphagia following IMRT for head and neck cancer: introduction of the EMLasso technique. Radiother Oncol 107(3):295–299

    Article  PubMed  Google Scholar 

  43. Ghosh-Laskar S, Yathiraj PH, Dutta D et al (2016) Prospective randomized controlled trial to compare 3‑dimensional conformal radiotherapy to intensity-modulated radiotherapy in head and neck squamous cell carcinoma: long-term results. Head Neck 38(Suppl 1):E1481–E1487

    Article  PubMed  Google Scholar 

  44. Russi EG, Corvò R, Merlotti A et al (2012) Swallowing dysfunction in head and neck cancer patients treated by radiotherapy: review and recommendations of the supportive task group of the Italian Association of Radiation Oncology. Cancer Treat Rev 38(8):1033–1049

    Article  PubMed  Google Scholar 

  45. Duprez F, Madani I, Bonte K et al (2013) Systematic review of dose-volume correlates for structures related to late swallowing disturbances after radiotherapy for head and neck cancer. Dysphagia 28(3):337–349. https://doi.org/10.1007/s00455-013-9452-2

    Article  PubMed  Google Scholar 

  46. Petkar I, Rooney K, Roe JW et al (2016) DARS: a phase III randomised multicentre study of dysphagia-optimised intensity-modulated radiotherapy (Do-IMRT) versus standard intensity-modulated radiotherapy (S-IMRT) in head and neck cancer. BMC Cancer 16(1):770

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Giuseppe Fanetti who assisted in the translation of the abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alterio.

Ethics declarations

Conflict of interest

D. Alterio, M.A. Gerardi, L. Cella, R. Spoto, V. Zurlo, A. Sabbatini, C. Fodor, V. D’Avino, M. Conson, F. Valoriani, D. Ciardo, R. Pacelli, A. Ferrari, P. Maissoneuve, L. Preda, R. Bruschini, M. Cossu Rocca, E. Rondi, S. Colangione, G. Palma, S. Dicuonzo, R. Orecchia, G. Sanguineti and B.A. Jereczek-Fossa declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

The Authors D. Alterio and M.A. Gerardi contributed equally to the manuscript.

Caption Electronic Supplementary Material

Supplementary Table S1. Anatomic borders of swallowing-related structures

66_2017_1206_MOESM2_ESM.docx

Supplementary Figure S1. Graphical representation of all the swallowing related structures contoured on the simulation CT for the dosimetric analysis

66_2017_1206_MOESM3_ESM.docx

Supplementary Table S2. Summary of significant dosimetric statistics for cervical esophagus, cricopharyngeal and inferior constrictor muscles and correlation coefficient (Rs) with severe acute dysphagia incidence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alterio, D., Gerardi, M.A., Cella, L. et al. Radiation-induced acute dysphagia. Strahlenther Onkol 193, 971–981 (2017). https://doi.org/10.1007/s00066-017-1206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1206-x

Keywords

Schlüsselwörter

Navigation