Skip to main content

Advertisement

Log in

“Radio-oncomics”

The potential of radiomics in radiation oncology

„Radio-oncomics“

Das Potenzial von Radiomics in der Strahlenonkologie

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Introduction

Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow.

Methods

After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created.

Results

Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information (“radiogenomics”) and could be used for tumor characterization.

Discussion

Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches.

Conclusion

This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.

Zusammenfassung

Einleitung

Radiomics beschreibt eine algorithmusbasierte Berechnung von Merkmalen auf Basis von Bilddatensätzen einschließlich Computertomographie (CT), Magnetresonanztomographie (MRT) und Positronenemissionstomographie (PET). Radiomics hat das Potenzial, die klinische Entscheidungsfindung, die Therapieplanung sowie die Nachsorge signifikant zu beeinflussen.

Methoden

Nach der Bildgebung erfolgt die Prozessierung der Daten sowie die Segmentierung von Zielstrukturen. Anschließend werden durch Algorithmen Merkmale berechnet, welche die Form, Intensität, Textur und multiskalierte Filter abbilden. Prognostische Modelle können durch Kombination und Korrelation relevanter Merkmale mit klinischen Daten erzeugt werden.

Ergebnis

In retrospektiven Studien wurden Radiomics-basierte prognostische Modelle entwickelt, die eine Vorhersagekraft u. a. für Gesamtüberleben, Therapieansprechen, Fernmetastasierung und radiogene Nebenwirkung zeigten. Radiomics-Merkmale können außerdem mit zugrundeliegenden genetischen Informationen korreliert werden (Radiogenomics) und zur Tumoridentifikation verwendet werden.

Diskussion

In der Präzisionsmedizin der Zukunft wird die Strahlentherapie maßgeblich durch Bildgebungs- und genombasierte Informationen beeinflusst werden. Behandlungskonzepte werden durch Individualisierung von Strahlendosis, Zielvolumendefinition und anderen therapieentscheidenden Faktoren auf den Patienten zugeschnitten werden. Dabei wird Radiomics durch Integration multipler Datensätze und dadurch bedingter Optimierung der prognostischen Aussagekraft möglicherweise eine herausragende Rolle einnehmen.

Schlussfolgerung

Dieser Übersichtsartikel fasst die aktuelle Literatur über die Anwendung des Radiomics-Konzepts in der Strahlentherapie zusammen. Die Notwendigkeit von klinischen Studien zur Integration von Radiomics-Modellen wird hervorgehoben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 4:441–446

    Article  Google Scholar 

  2. Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 3:654–663

    Article  Google Scholar 

  3. Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol 4:709–713

    Article  Google Scholar 

  4. Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 2:232–241

    Article  Google Scholar 

  5. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 9:1234–1248

    Article  Google Scholar 

  6. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S et al (2017) Radiogenomics of Glioblastoma: machine learning – based classification of molecular characteristics by using Multiparametric and Multiregional MR imaging features. Radiology 0:1–12

    Google Scholar 

  7. Stoyanova R, Pollack A, Takhar M, Lynne C, Parra N, Lam LLC et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 33:53362–53376

    Article  Google Scholar 

  8. Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 3:345–350

    Article  Google Scholar 

  9. Court LE, Fave X, Mackin D, Lee J, Yang J, Zhang L (2016) Computational resources for radiomics. Transl Cancer Res 4:340–348

    Article  Google Scholar 

  10. Narang S, Lehrer M, Yang D, Lee J, Rao A (2016) Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 4:383–397

    Article  Google Scholar 

  11. Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics. Phys Med Biol 13:R150–66

    Article  Google Scholar 

  12. Chalkidou A, O’Doherty MJ, Marsden PK, Wahl R, Jacene H, Kasamon Y et al (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLOS ONE 5:e0124165

    Article  Google Scholar 

  13. Cunliffe A, Armato SG, Castillo R, Pham N, Guerrero T, Al-Hallaq HA et al (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 5:1048–1056

    Article  Google Scholar 

  14. Chen X, Bergom C, Currey AD, Kelly TR, Edwin C, Montes A et al (2016) Quantitative computed tomography for radiation-induced changes in normal breast tissue during partial breast irradiation. Int J Radiat Oncol 2:S191–192

    Article  Google Scholar 

  15. Scalco E, Fiorino C, Cattaneo GM, Sanguineti G, Rizzo G (2013) Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. Radiother Oncol 3:384–387

    Article  Google Scholar 

  16. Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 1:148

    Article  Google Scholar 

  17. Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R et al (2009) Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol 2:618–625

    Article  Google Scholar 

  18. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 2:563–577

    Article  Google Scholar 

  19. Bhandari V, Patel P, Gurjar O, Gupta K (2014) Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers. J Med Phys 3:164

    Article  Google Scholar 

  20. van Timmeren JE, Leijenaar RTH, van Elmpt W, Lambin P (2016) Interchangeability of a radiomic signature between conventional and weekly cone beam computed tomography allowing response prediction in non-small cell lung cancer. Int J Radiat Oncol 2:S193

    Article  Google Scholar 

  21. Paul J, Gore EM, Li A (2016) Quantitative computed tomography for tumor response assessment during radiation therapy for lung cancer. Int J Radiat Oncol 2:S193

    Article  Google Scholar 

  22. Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 12:6784–6797

    Article  Google Scholar 

  23. Combs SE, Nüsslin F, Wilkens JJ (2016) Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 4:209–215

    Article  Google Scholar 

  24. Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP et al (2016) Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. Eur Radiol 27(7):2916–2927

    Article  PubMed  Google Scholar 

  25. Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G et al (2016) Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol 5:1121–1128

    Article  Google Scholar 

  26. Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 1:19–26

    Article  Google Scholar 

  27. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. doi:10.1038/ncomms5006

    Google Scholar 

  28. Parmar C, Leijenaar RTH, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D et al (2015) Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep. doi:10.1038/srep11044

    Google Scholar 

  29. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. doi:10.3389/fonc.2015.00272

    Google Scholar 

  30. Zhou Z, Folkert MR, Iyengar P, Zhang Y, Westover KD, Wang J (2016) Predicting distant failure in lung stereotactic body radiation therapy using multiobjective radiomics model. Int J Radiat Oncol Biol Phys 2:S193–194

    Article  Google Scholar 

  31. Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 3:480–486

    Article  Google Scholar 

  32. Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 5:1375–1382

    Article  Google Scholar 

  33. Zhang H, Tan S, Chen W, Kligerman S, Kim G, D’Souza WD et al (2014) Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Int J Radiat Oncol Biol Phys 1:195–203

    Article  Google Scholar 

  34. King AD, Chow K‑K, Yu K‑H, Mo FKF, Yeung DKW, Yuan J et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2:531–538. doi:10.1148/radiol.12120167

    Article  Google Scholar 

  35. Leijenaar RTH, Carvalho S, Hoebers FJP, et al (2015) External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol (Madr) 54:1423–1429. doi:10.3109/0284186X.2015.1061214

  36. Kanwar A, Mohamed ASR, Court LE, Zhang L, Marai GE, Canahuate G et al (2016) Development of a predictive quantitative contrast computed tomography-based feature (Radiomics) profile for local recurrence in oropharyngeal cancers. Int J Radiat Oncol 2:S191

    Article  Google Scholar 

  37. Jansen JF, Lu Y, Gupta G, et al (2016) Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. World J Radiol 8:90–97. doi:10.4329/wjr.v8.i1.90

  38. Vallieres M, Kumar A, Sultanem K, El Naqa I (2013) FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2:467

    Article  Google Scholar 

  39. Nie K, Shi L, Chen Q, Hu X, Jabbour S, Yue N et al (2016) Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Clin Cancer Res 22(21):5256–5264

    Article  PubMed  Google Scholar 

  40. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 11:6725

    Article  Google Scholar 

  41. Rios Velazquez E, Meier R, Dunn WD, Alexander B, Wiest R, Bauer S et al (2015) Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features. Sci Rep. doi:10.1038/srep16822

    Google Scholar 

  42. Grossmann P, Gutman DA, Dunn WD, Holder CA, Aerts HJWL, Aerts HJWL (2016) Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer. doi:10.1186/s12885-016-2659-5

    PubMed  PubMed Central  Google Scholar 

  43. McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J, Rand SD et al (2016) Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy. Tomography 3:223–228

    Google Scholar 

  44. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol:. doi:10.1007/s00330-017-4815-y

    PubMed  Google Scholar 

  45. Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S et al (2016) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 1:133–141

    Article  Google Scholar 

  46. Gnep K, Fargeas A, Gutiérrez-Carvajal RE, Commandeur F, Mathieu R, Ospina JD et al (2016) Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging 1:103–117

    Google Scholar 

  47. Obeid J‑P, Stoyanova R, Kwon D, Patel M, Padgett K, Slingerland J et al (2016) Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat. Clin Transl Oncol 19(2):211–218

    Article  PubMed  Google Scholar 

  48. Fox MJ, Gibbs P, Pickles MD (2016) Minkowski functionals: An MRI texture analysis tool for determination of the aggressiveness of breast cancer. J Magn Reson Imaging 4:903–910

    Article  Google Scholar 

  49. Parra NA, Maudsley AA, Gupta RK, Ishkanian F, Huang K, Walker GR et al (2014) Volumetric spectroscopic imaging of glioblastoma multiforme radiation treatment volumes. Int J Radiat Oncol Biol Phys 2:376–384

    Article  Google Scholar 

  50. Moran MS (2015) Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol 16:e113–22

    Article  PubMed  Google Scholar 

  51. Maas M, Beets-Tan RGH, Lambregts DMJ, Lammering G, Nelemans PJ, Engelen SME et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 35:4633–4640

    Article  Google Scholar 

  52. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep. doi:10.1038/srep13087

    Google Scholar 

  53. Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 1:147–152

    Article  Google Scholar 

  54. Gutman DA, Cooper LAD, Hwang SN, Holder CA, Gao J, Aurora TD et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2:560–569

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Multhoff for supplying figure-relevant images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Caspar Peeken.

Ethics declarations

Conflict of interest

J.C. Peeken, F. Nüsslin, and S.E. Combs declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeken, J.C., Nüsslin, F. & Combs, S.E. “Radio-oncomics”. Strahlenther Onkol 193, 767–779 (2017). https://doi.org/10.1007/s00066-017-1175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1175-0

Keywords

Schlüsselwörter

Navigation