Skip to main content
Log in

An individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging

Studie zur individualisierten Bestrahlungsdosiseskalation bei nichtkleinzelligem Lungenkarzinom basierend auf der FDG-PET-Bildgebung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Aim

The aim of the study was to assess the feasibility of an individualized 18F fluorodeoxyglucose positron emission tomography (FDG-PET)-guided dose escalation boost in non-small cell lung cancer (NSCLC) patients and to assess its impact on local tumor control and toxicity.

Patients and methods

A total of 13 patients with stage II–III NSCLC were enrolled to receive a dose of 62.5 Gy in 25 fractions to the CT-based planning target volume (PTV; primary turmor and affected lymph nodes). The fraction dose was increased within the individual PET-based PTV (PTVPET) using intensity modulated radiotherapy (IMRT) with a simultaneous integrated boost (SIB) until the predefined organ-at-risk (OAR) threshold was reached. Tumor response was assessed during follow-up by means of repeat FDG-PET/computed tomography. Acute and late toxicity were recorded and classified according to the CTCAE criteria (Version 4.0). Local progression-free survival was determined using the Kaplan-Meier method.

Results

The average dose to PTVPET reached 89.17 Gy for peripheral and 75 Gy for central tumors. After a median follow-up period of 29 months, seven patients were still alive, while six had died (four due to distant progression, two due to grade 5 toxicity). Local progression was seen in two patients in association with further recurrences. One and 2-year local progression free survival rates were 76.9% and 52.8%, respectively. Three cases of acute grade 3 esophagitis were seen. Two patients with central tumors developed late toxicity and died due to severe hemoptysis.

Conclusion

These results suggest that a non-uniform and individualized dose escalation based on FDG-PET in IMRT delivery is feasible. The doses reached were higher in patients with peripheral compared to central tumors. This strategy enables good local control to be achieved at acceptable toxicity rates. However, dose escalation in centrally located tumors with direct invasion of mediastinal organs must be performed with great caution in order to avoid severe late toxicity.

Zusammenfassung

Zielsetzung

Ziel der Studie war es, die Anwendbarkeit einer individualisierten Fluordesoxyglukose-Positronenemissionstomographie(FDG-PET)-geführten partiellen Dosissteigerung beim nichtkleinzelligen Lungenkarzinom (NSCLC) zu prüfen und deren Einfluss auf die lokale Tumorkontrolle und Toxizität zu beurteilen.

Patienten und Methoden

Dreizehn Patienten mit NSCLC in Stadium II–III wurden in die Studie einbezogen und erhielten im Rahmen einer Radiochemotherapie eine Dosis von 62,5 Gy in 25 Fraktionen auf das CT-basierte Planungszielvolumen (PTV; primärer Tumor und betroffene Lymphknoten). Dabei wurde die Fraktionsdosis innerhalb des individuellen PET-basierten PTV (PTVPET) unter Anwendung einer intensitätsmodulierten Radiotherapie (IMRT) mit simultan-integriertem Boost (SIB) bis zum Erreichen der vordefinierten Organ-at-risk(OAR)-Grenze erhöht. In der Nachbeobachtungszeit wurde die Tumorantwort mit wiederholter FDG-PET/Computertomographie überprüft. Die frühe und späte Toxizität wurden erfasst und anhand der Common-Terminology-Criteria-for-Adverse-Events(CTCAE)-Kriterien (Version 4.0) klassifiziert. Das lokale progressionsfreie Überleben wurde anhand der Kaplan-Meier-Methode bestimmt.

Ergebnisse

Die Durchschnittsdosis auf das PTVPET erreichte 89,17 Gy für periphere und 75 Gy für zentrale Tumoren. Nach einer medianen Nachbeobachtungszeit von 29 Monaten waren 7 Patienten weiterhin am Leben, 6 waren verstorben (4 davon an Fernrezidiven, 2 an einer Toxizität fünften Grades). Bei 2 Patienten trat eine lokale Progression in Verbindung mit weiteren Rezidiven auf. Die lokalen progressionsfreien 1‑ und 2‑Jahres-Überlebensraten lagen bei 76,9 % bzw. 52,8 %. Es wurden 3 Fälle akuter Ösophagitiden dritten Grades beobachtet. Zwei Patienten mit zentralen Tumoren entwickelten eine späte Toxizität und verstarben infolge einer schwerwiegenden Hämoptyse.

Schlussfolgerung

Gemäß diesen Ergebnissen ist für Patienten mit NSCLC eine im Rahmen der IMRT angewendete, auf der FDG-PET basierende individualisierte Dosiseskalation möglich. Die erreichte Strahlendosis ist bei peripheren Tumoren höher als bei zentralen. Mit dieser Strategie wird eine hohe lokale Kontrolle bei akzeptabler Toxizitätsrate erreicht. Dennoch sollte die Dosissteigerung für zentrale Tumoren mit direktem Eindringen in Mediastinalorgane mit äußerster Vorsicht erfolgen, um eine schwere späte Toxizität zu vermeiden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28(13):2181–2190

    Article  CAS  PubMed  Google Scholar 

  2. Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ et al (2010) Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol 28(35):5153–5159

    Article  PubMed  Google Scholar 

  3. Belderbos JS, Heemsbergen WD, De Jaeger K, Baas P, Lebesque JV (2006) Final results of a Phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 66(1):126–134

    Article  PubMed  Google Scholar 

  4. Bentzen SM, Saunders MI, Dische S (2002) From CHART to CHARTWEL in non-small cell lung cancer: clinical radiobiological modelling of the expected change in outcome. Clin Oncol (R Coll Radiol) 14(5):372–381

    Article  CAS  Google Scholar 

  5. Kong FM, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M et al (2005) High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 63(2):324–333

    Article  PubMed  Google Scholar 

  6. Machtay M, Bae K, Movsas B, Paulus R, Gore EM et al (2012) Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 82(1):425–434

    Article  PubMed  Google Scholar 

  7. Saunders MI, Rojas A, Lyn BE, Wilson E, Phillips H (2002) Dose-escalation with CHARTWEL (continuous hyperfractionated accelerated radiotherapy week-end less) combined with neo-adjuvant chemotherapy in the treatment of locally advanced non-small cell lung cancer. Clin Oncol (R Coll Radiol) 14(5):352–360

    Article  CAS  Google Scholar 

  8. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16(2):187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffmann AL, Troost EG, Huizenga H, Kaanders JH, Bussink J (2012) Individualized dose prescription for hypofractionation in advanced non-small-cell lung cancer radiotherapy: an in silico trial. Int J Radiat Oncol Biol Phys 83(5):1596–1602

    Article  PubMed  Google Scholar 

  10. Mehta M, Scrimger R, Mackie R, Paliwal B, Chappell R et al (2001) A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 49(1):23–33

    Article  CAS  PubMed  Google Scholar 

  11. Cox JD (2012) Are the results of RTOG 0617 mysterious? Int J Radiat Oncol Biol Phys 82(3):1042–1044

    Article  PubMed  Google Scholar 

  12. Wanet M, Lee JA, Weynand B, De Bast M, Poncelet A et al (2011) Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 98(1):117–125

    Article  PubMed  Google Scholar 

  13. Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC et al (2008) Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 71(5):1402–1407

    Article  CAS  PubMed  Google Scholar 

  14. Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, Folgering AM et al (2012) Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 75(1):73–76

    Article  PubMed  Google Scholar 

  15. Borst GR, Belderbos JS, Boellaard R, Comans EF, De Jaeger K et al (2005) Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer 41(11):1533–1541

    Article  PubMed  Google Scholar 

  16. Petit SF, Aerts HJ, van Loon JG, Offermann C, Houben R et al (2009) Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): an exploratory clinical study. Radiother Oncol 91(3):393–398

    Article  PubMed  Google Scholar 

  17. van Baardwijk A, Bosmans G, Dekker A, van Kroonenburgh M, Boersma L et al (2007) Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother Oncol 82(2):145–152

    Article  PubMed  Google Scholar 

  18. Velazquez ER, Aerts HJ, Oberije C, De Ruysscher D, Lambin P (2010) Prediction of residual metabolic activity after treatment in NSCLC patients. Acta Oncol 49(7):1033–1039

    Article  PubMed  Google Scholar 

  19. Fowler JF, Chappell R (2000) Non-small cell lung tumors repopulate rapidly during radiation therapy. Int J Radiat Oncol Biol Phys 46(2):516–517

    Article  CAS  PubMed  Google Scholar 

  20. Machtay M, Hsu C, Komaki R, Sause WT, Swann RS et al (2005) Effect of overall treatment time on outcomes after concurrent chemoradiation for locally advanced non-small-cell lung carcinoma: analysis of the Radiation Therapy Oncology Group (RTOG) experience. Int J Radiat Oncol Biol Phys 63(3):667–671

    Article  PubMed  Google Scholar 

  21. van Baardwijk A, Bosmans G, Bentzen SM, Boersma L, Dekker A et al (2008) Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial. Int J Radiat Oncol Biol Phys 71(4):1103–1110

    Article  PubMed  Google Scholar 

  22. van Baardwijk A, Reymen B, Wanders S, Borger J, Ollers M et al (2012) Mature results of a phase II trial on individualised accelerated radiotherapy based on normal tissue constraints in concurrent chemo-radiation for stage III non-small cell lung cancer. Eur J Cancer 48(15):2339–2346

    Article  PubMed  Google Scholar 

  23. Schwarz M, Alber M, Lebesque JV, Mijnheer BJ, Damen EM (2005) Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 62(2):561–570

    Article  PubMed  Google Scholar 

  24. Goossens S, Senny F, Lee JA, Janssens G, Geets X (2014) Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions. J Appl Clin Med Phys 15(1):4332

    Article  PubMed  Google Scholar 

  25. Sterpin E, Janssens G, Orban de Xivry J, Goossens S, Wanet M et al (2012) Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: a 4D Monte Carlo treatment planning study. Radiother Oncol 104(2):173–180

    Article  PubMed  Google Scholar 

  26. Geets X, Lee JA, Bol A, Lonneux M, Gregoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34(9):1427–1438

    Article  PubMed  Google Scholar 

  27. Bradley J, Graham MV, Winter K, Purdy JA, Komaki R et al (2005) Toxicity and outcome results of RTOG 9311: a phase I–II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61(2):318–328

    Article  PubMed  Google Scholar 

  28. Bradley JD, Moughan J, Graham MV, Byhardt R, Govindan R et al (2010) A phase I/II radiation dose escalation study with concurrent chemotherapy for patients with inoperable stages I to III non-small-cell lung cancer: phase I results of RTOG 0117. Int J Radiat Oncol Biol Phys 77(2):367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76(3 Suppl):77–85

    Article  Google Scholar 

  30. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(3 Suppl):S70–6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shi A, Zhu G, Wu H, Yu R, Li F et al (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song CH, Pyo H, Moon SH, Kim TH, Kim DW et al (2010) Treatment-related pneumonitis and acute esophagitis in non-small-cell lung cancer patients treated with chemotherapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 78(3):651–658

    Article  PubMed  Google Scholar 

  33. van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M et al (2010) Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol 28(8):1380–1386

    Article  PubMed  Google Scholar 

  34. van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104(1):67–71

    Article  PubMed  Google Scholar 

  35. Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB (2010) Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys 76(3 Suppl):S86–93

    Article  PubMed  PubMed Central  Google Scholar 

  36. Socinski MA, Morris DE, Halle JS, Moore DT, Hensing TA et al (2004) Induction and concurrent chemotherapy with high-dose thoracic conformal radiation therapy in unresectable stage IIIA and IIIB non-small-cell lung cancer: a dose-escalation phase I trial. J Clin Oncol 22(21):4341–4350

    Article  CAS  PubMed  Google Scholar 

  37. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skougaard K, Nielsen D, Jensen BV, Hendel HW (2013) Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. J Nucl Med 54(7):1026–1031

    Article  CAS  PubMed  Google Scholar 

  39. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  40. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782

    Article  CAS  PubMed  Google Scholar 

  41. De Ruysscher D, Wanders S, van Haren E, Hochstenbag M, Geeraedts W et al (2005) Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 62(4):988–994

    Article  PubMed  Google Scholar 

  42. Bradley JD, Wahab S, Lockett MA, Perez CA, Purdy JA (2003) Elective nodal failures are uncommon in medically inoperable patients with Stage I non-small-cell lung carcinoma treated with limited radiotherapy fields. Int J Radiat Oncol Biol Phys 56(2):342–347

    Article  PubMed  Google Scholar 

  43. Emami B, Mirkovic N, Scott C, Byhardt R, Graham MV et al (2003) The impact of regional nodal radiotherapy (dose/volume) on regional progression and survival in unresectable non-small cell lung cancer: an analysis of RTOG data. Lung Cancer 41(2):207–214

    Article  PubMed  Google Scholar 

  44. Garg S, Gielda BT, Turian JV, Liptay M, Warren WH et al (2013) Patterns of regional failure in stage III non-small cell lung cancer treated with neoadjuvant chemoradiation therapy and resection. Pract Radiat Oncol 3(4):287–293

    Article  PubMed  Google Scholar 

  45. Rosenzweig KE, Sim SE, Mychalczak B, Braban LE, Schindelheim R et al (2001) Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 50(3):681–685

    Article  CAS  PubMed  Google Scholar 

  46. Senan S, Burgers S, Samson MJ, van Klaveren RJ, Oei SS et al (2002) Can elective nodal irradiation be omitted in stage III non-small-cell lung cancer? Analysis of recurrences in a phase II study of induction chemotherapy and involved-field radiotherapy. Int J Radiat Oncol Biol Phys 54(4):999–1006

    Article  PubMed  Google Scholar 

  47. Provencio M, Sanchez A, Garrido P, Valcarcel F (2010) New molecular targeted therapies integrated with radiation therapy in lung cancer. Clin Lung Cancer 11(2):91–97

    Article  CAS  PubMed  Google Scholar 

  48. Zhuang H, Zhao X, Zhao L, Chang JY, Wang P (2014) Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer. Drug Des Devel Ther 8:667–675

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han CB, Wang WL, Quint L, Xue JX, Matuszak M et al (2014) Pulmonary artery invasion, high-dose radiation, and overall survival in patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 89(2):313–321

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cannon DM, Mehta MP, Adkison JB, Khuntia D, Traynor AM et al (2013) Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J Clin Oncol 31(34):4343–4348

    Article  PubMed  PubMed Central  Google Scholar 

  51. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24(30):4833–4839

    Article  PubMed  Google Scholar 

  52. Langendijk JA, Tjwa MK, de Jong JM, ten Velde GP, Wouters EF (1998) Massive haemoptysis after radiotherapy in inoperable non-small cell lung carcinoma: is endobronchial brachytherapy really a risk factor? Radiother Oncol 49(2):175–183

    Article  CAS  PubMed  Google Scholar 

  53. Wanet M, Sterpin E, Janssens G, Delor A, Lee JA et al (2014) Validation of the mid-position strategy for lung tumors in helical TomoTherapy. Radiother Oncol. doi:10.1016/j.radonc.2013.10.025

    PubMed  Google Scholar 

Download references

Funding

This research program was supported by a grant from the Belgian national fund for scientific research (FRS-FNRS Télévie, grant number, 7.4537.09). X. Geets is a Postdoctoral Researcher with the FRS-FNRS, partly funded by the Clinical and Experimental Research Institute (IREC). John A. Lee is a Research Associate with the FRS-FNRS (FC 63880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Wanet M.D. Ph.D..

Ethics declarations

Conflict of interest

M. Wanet, A. Delor, F.-X. Hanin, B. Ghaye, A. Van Maanen, V. Remouchamps, C. Clermont, S. Goossens, J.A. Lee, G. Janssens, A. Bol and X. Geets declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Authors Contributions

M. Wanet participated in the design and coordination of the trial, recruited patients, carried out all imaging sessions and all volume delineations. MW also performed the follow-up during and after the treatment of all patients, tumor assessment on both imaging modalities and drafted the manuscript. A. Delor planned the treatment of 11 patients. F.-X. Hanin supervised the tumor response assessment on FDG-PET imaging (PERCIST and EORTC). B. Ghaye supervised and performed the tumor response assessment on CT imaging (RECIST). A. Van Maanen performed the statistical analysis. V. Remouchamps recruited the patients at the second center (two patients) and performed the follow-up during and after treatment of these patients. C. Clermont planned the treatment of two patients. S. Goossens helped during the imaging session. J.A. Lee participated by providing the method and segmentation algorithm for PET imaging delineation and helped to draft the manuscript. G. Janssens participated by providing the method and non-rigid registration algorithm for ITV generation on CT and PET imaging. A. Bol helped during and after imaging sessions, as well as in tumor response assessment according to PERCIST (SULpeak measures). X. Geets designed the trial and recruited patients, supervised all steps of the trial as well as manuscript drafting. All authors read and approved the final manuscript.

Trial Registration

EU Clinical Trials Register, EudraCT number 2011-003124-12.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanet, M., Delor, A., Hanin, FX. et al. An individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging. Strahlenther Onkol 193, 812–822 (2017). https://doi.org/10.1007/s00066-017-1168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1168-z

Keywords

Schlüsselwörter

Navigation