Skip to main content

Advertisement

Log in

Accelerating total body irradiation with large field modulated arc therapy in standard treatment rooms without additional equipment

Weiterentwicklung einer Ganzkörperbestrahlungstechnik in modulierter Rotationstechnik mit großen Feldern für Standardbestrahlungsräume ohne zusätzliches Equipment

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to develop a generic and ultra-efficient modulated arc technique for treatment with total body irradiation (TBI) without additional equipment in standard treatment rooms.

Methods

A continuous gantry arc between 300° and 70° composed of 26 subarcs (5° per subarc) using a field size of 40 × 40 cm2 was used to perform the initial beam data measurements. The profile was measured parallel to the direction of gantry rotation at a constant depth of 9 cm (phantom thickness 18 cm). Beam data were measured for single 5° subarcs, dissecting the individual contribution of each subarc to a certain measurement point. The phantom was moved to 20 measurement positions along the profile. Then profile optimization was performed manually by varying the weighting factors of all segments until calculated doses at all points were within ± 1 %. Finally, the dose distribution of the modulated arc was verified in phantom thicknesses of 18 and 28 cm.

Results

The measured profile showed a relative mean dose of 99.7 % [standard deviation (SD) 0.7 %)] over the length of 200 cm at a depth of 9 cm. The measured mean effective surface dose (at a depth of 2 cm) was 102.7 % (SD 2.1 %). The measurements in the 28 cm slab phantom revealed a mean dose of 95.9 % (SD 2.9 %) at a depth of 14 cm. The mean dose at a depth of 2 cm was 111.9 % (SD 4.1 %). Net beam-on-time for a 2 Gy fraction is approximately 8 min.

Conclusion

This highly efficient modulated arc technique for TBI can replace conventional treatment techniques, providing a homogeneous dose distribution, dosimetric robustness, extremely fast delivery, and applicability in small treatment rooms, with no need for additional equipment.

Zusammenfassung

Ziel

Das Ziel dieses Projekts war die Entwicklung einer generischen, hocheffizienten und modulierten Rotationsbestrahlungstechnik für Ganzkörperbestrahlung (TBI, „total body irradiation“), die ohne zusätzliches Equipment in Standartbehandlungsräumen angewendet werden kann.

Methodik

Ein kontinuierlicher Bestrahlungsbogen zwischen 70–300° mit einer Feldgröße von 40 × 40 cm2 wurde in 26 Abschnitte zu 5° unterteilt. Diese wurden für eine Basisdatenmessung in einem RW3-Plattenphantom verwendet. Die Phantomstärke betrug 18 cm. Die Messungen wurden in 9 cm Tiefe mit einer Stabkammer durchgeführt. Die Erhebung der Basisdaten erfolgte durch die Messung der relativen Dosisbeiträge der einzelnen 5°-Bogenabschnitte, die separat nacheinander gemessen wurden. Das Plattenphantom wurde sukzessive, entlang des Bestrahlungsfelds (über 2 m Länge) in 20 Messpositionen positioniert, um die einzelnen Dosisbeiträge der einzelnen 5°-Bogenabschnitte entlang der gesamten Profillänge zu ermitteln. Anschließend wurden die Wichtungsfaktoren der einzelnen Bogenabschnitte schrittweise so verändert, dass schließlich die relative Dosis in allen Messpunkten auf ± 1 % homogenisiert wurde. Der modulierte Bestrahlungsbogen wurde in zwei Phantomstärken, 18 und 28 cm, verifiziert.

Ergebnisse

Die gemessenen Profile zeigten in 9 cm Messtiefe eine relative mittlere Dosis von 99,7 % [Standardabweichung (SD) 0,7 %] über die gesamte Messlänge von 2 m. Die maximalen Abweichungen variierten zw. Dmin 98,3 % und Dmax 100,6 %. Die mittlere Dosis in 2 cm Tiefe betrug 102,7 % (SD 2,1 %). Die Messungen im Plattenphantom mit 28 cm Stärke zeigten eine mittlere Dosis von 95,9 % (SD 2,9 %) in 14 cm Messtiefe. Die mittlere Dosis in 2 cm Tiefe betrug 111,9 % (SD 4,1 %). Die Nettobestrahlungszeit für 2 Gy beträgt etwa 8 min.

Schlussfolgerung

Die von uns entwickelte modulierte Rotationstechnik bittet eine extrem schnelle, robuste und einfache Alternative zu etablierten Ganzkörperbehandlungstechniken, die ohne zusätzliches Equipment in kleinen Bestrahlungsräumen eine homogene Dosisapplikation ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quast U (2006) Whole body radiotherapy: a TBI-guideline. J Med Phys 31:5–12

    Article  PubMed Central  PubMed  Google Scholar 

  2. Quast U (1987) Total body irradiation—review of treatment techniques in Europe. Radiother Oncol 9:91–106

    Article  CAS  PubMed  Google Scholar 

  3. Heublein AC (1932) Preliminary report on continuous irradiation of the entire body. Radiol 18:1051–1062

    Article  Google Scholar 

  4. Shank B (1983) Techniques of magna-field irradiation. Int J Radiat Oncol Biol Phys 9:1925–1931

    Article  CAS  PubMed  Google Scholar 

  5. Yao R, Bernard D, Turian J et al (2012) A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity. Med Phys 39:2239–2248

    Article  PubMed  Google Scholar 

  6. Held M, Kirby N, Morin O et al (2012) Dosimetric aspects of inverse-planned modulated-arc total-body irradiation. Med Phys 39:5263–5271

    Article  PubMed  Google Scholar 

  7. Kirby N, Held M, Morin O et al (2012) Inverse-planned modulated-arc total-body irradiation. Med Phys 39:2761–2764

    Article  PubMed  Google Scholar 

  8. Chretien M, Cote C, Blais R et a (2000) A variable speed translating couch technique for total body irradiation. Med Phys 27:1127–1130

    Article  CAS  PubMed  Google Scholar 

  9. Connors S, Scrimger J, Logus W et al (1988) Development of a translating bed for total body irradiation. Med Dosim 13:195–199

    CAS  PubMed  Google Scholar 

  10. Gerig LH, Szanto J, Bichay T et al (1994) A translating-bed technique for total-body irradiation. Phys Med Biol 39:19–35

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang T, Wu Q (2010) Generating arbitrary one-dimensional dose profiles using rotational therapy. Phys Med Biol 55:6263–6277

    Article  PubMed  Google Scholar 

  12. Jahnke A, Jahnke L, Molina-Duran F et al (2014) Arc therapy for total body irradiation—a robust novel treatment technique for standard treatment rooms. Radiother Oncol 110:553–557. (2014/01/21 ed.)

    Article  PubMed  Google Scholar 

  13. Mancosu P, Navarria P, Castagna L et al (2013) Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy. Med Phys 40:111713

    Article  PubMed  Google Scholar 

  14. Gruen A, Ebell W, Wlodarczyk W et al (2013) Total body irradiation (TBI) using helical tomotherapy in children and young adults undergoing stem cell transplantation. Radiat Oncol 8:92

    Article  PubMed Central  PubMed  Google Scholar 

  15. Penagaricano JA, Chao M, Van Rhee F, Ratanatharathorn V et al (2011) Clinical feasibility of TBI with helical tomotherapy. Bone Marrow Transplant 46:929–935

    Article  CAS  PubMed  Google Scholar 

  16. Wong JY, Rosenthal J, Liu A et al (2009) Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys 73:273–279

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schultheiss T.E, Wong J, Liu A et al (2007) Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int J Radiat Oncol Biol Phys 67:1259–1267

    Article  PubMed  Google Scholar 

  18. Surucu M, Yeginer M, Kavak G et al (2012) Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom. Med Phys 39:281–288

    Article  PubMed  Google Scholar 

  19. Sampath S, Schultheiss TE, Wong J (2005) Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int J Radiat Oncol Biol Phys 63:876–884

    Article  PubMed  Google Scholar 

  20. Van Dyk J, Galvin JM, Glasgow GP et al (1986) AAPM report 17, Task group 29 of the Radiation Therapy Committee, American Association of Physicists in Medicine.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Polednik Ph.D..

Ethics declarations

Conflict of interest

Martin Polednik has received teaching honoraria from Elekta. Frank Lohr has received research and travel support from Elekta, IBA, and C-Rad and teaching honoraria from Elekta and IBA and is a board member of C-Rad. Frederik Wenz has received honoraria and travel support as a medical advisor from Elekta.

Michael Ehmann has received teaching honoraria from Elekta.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polednik, M., Lohr, F., Ehmann, M. et al. Accelerating total body irradiation with large field modulated arc therapy in standard treatment rooms without additional equipment. Strahlenther Onkol 191, 869–874 (2015). https://doi.org/10.1007/s00066-015-0883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0883-6

Keywords

Schlüsselwörter

Navigation