Skip to main content
Log in

3D image-guided surgery for fragility fractures of the sacrum

Die 3D-navigierte operative Versorgung von Fragilitätsfrakturen des Sakrums

  • Surgical Technique
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Abstract

Objective

Stabilizing sacral fragility fractures without radiation exposure to the surgical team.

Indications

Non-displaced or minimally displaced unilateral or bilateral transalar, transforaminal or central sacral fractures in weak and osteoporotic bone.

Contraindications

Displaced or highly unstable sacral fractures. Patients under therapeutic anticoagulation. Patients needing fast track orthopedic surgery.

Surgical technique

Prone position. Reference clamp installation on posterior iliac crest. Initial 3D scan of posterior pelvic ring. Image-guided virtual determination of 2–3 interforaminal iliosacroiliac trajectories in sacral vertebrae I and II. Lateral transgluteal mini-open approach. 3D image-guided insertion of 2–3 guide wires along planned trajectories. 3D-scan for controlling guide wire positions. Virtual determination of screw lengths. Cortical drilling and cannulated screw insertion along guide wires. Radiological documentation.

Follow-up

Clinical and radiological follow-up after 12 weeks, 12 and 24 months including radiographs in anteroposterior, lateral, inlet and outlet views.

Results

From October 2011 until October 2016 a total of 124 sacral fracture sites (in sacral vertebrae I and II) were treated with 120 navigated sacral screws in 52 patients (48 females, 4 males; mean age 76 ± 10 years, range 36–90 years) using 3D image guidance for screw placement. Image-guidance accuracy was 99.2% (119/120 screws correctly placed). Complications comprised revision surgery for subfascial hematoma evacuation (n = 1) and screw removal due to loosening after 12 weeks (n = 2). Four patients died before final follow-up. Mean pain visual analogue scale (VAS) decreased from 8.9 ± 1.1 (presurgery value) over 3.6 ± 1.7 (postsurgery value) to 1.8 ± 1.9 (2-year follow-up value), mean Oswestry disability index (ODI) improved from 86.2 ± 4.9% (presurgery value) over 28.5 ± 9.5% (postsurgery value) to 23.3 ± 13.7% (2-year follow-up value).

Zusammenfassung

Operationsziel

Belastungsstabile Schraubenosteosynthese nichtdislozierter Sakrumfrakturen ohne Strahlenbelastung des OP-Personals.

Indikationen

Nicht-/wenig dislozierte ein-/beidseitige und zentrale Sakrumfrakturen bei reduzierter Knochenqualität/Osteoporose.

Kontraindikationen

Dislozierte/hochgradig instabile Sakrumfrakturen. Therapeutische Antikoagulation. Kreislaufinstabilität.

Operationstechnik

Bauchlagerung. Installieren der Navigationsreferenz am hinteren Beckenkamm. 3‑D-Scan des hinteren Beckenrings. Navigierte virtuelle Festlegung von 2–3 interforaminalen iliosakralen Trajektorien im 1. und 2. Sakralwirbel. Minimal-invasiver lateraler transglutealer Zugang. Navigiertes Einbringen von 2–3 Führungsdrähten entlang der geplanten Trajektorien. 3‑D-Scan zur Kontrolle der Führungsdrahtlage. Virtuelle Schraubenlängenbestimmung. Führungsdrahtgeführtes Aufbohren der Kortikalis und Eindrehen der Schrauben. Röntgendokumentation.

Weiterbehandlung

Klinisch-radiologische Nachuntersuchungen nach 12 Wochen, 12 und 24 Monaten mit Röntgenaufnahmen in anteroposteriorem und lateralem Strahlengang sowie Inlet/Outlet-Aufnahmen.

Ergebnisse

Von Oktober 2011 bis Oktober 2016 wurden 52 Patienten (48 Frauen, 4 Männer, Durchschnittsalter 76 ± 10 [Spannweite: 36–90] Jahre) mit insgesamt 124 sakralen Frakturen (S1, S2) mittels 120 navigiert eingebrachter Schrauben versorgt. Die Schraubenplatzierungsgenauigkeit betrug 99,2 % (119/120 korrekt platzierte Schrauben). Komplikationen erforderten Revisionsoperationen bei subfaszialem Hämatom (n = 1) und Schraubenlockerung nach 12 Wochen (n = 2). Nach 2 Jahren waren 4 Patienten verstorben. Im verbliebenen Kollektiv hatte sich das Schmerzniveau von 8,9 ± 1,1 (präoperativ) auf 3,6 ± 1,7 (postoperativ) bis auf 1,8 ± 1,9 (2-Jahres-Nachuntersuchung) VAS-Punkte (visuelle Analogskala), der ODI (Oswestry-Disability-Index) von 86,2 ± 4,9 % (präoperativ) über 28,5 ± 9,5 % (postoperativ) auf 23,3 ± 13,7 % (zum 2‑Jahres-Nachuntersuchungszeitpunkt) gebessert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Balling H (2018) Time demand and radiation dose in 3D-fluoroscopy-based navigation-assisted 3D-fluoroscopy-controlled pedicle screw instrumentations. Spine 43(9):E512–E519. https://doi.org/10.1097/BRS.0000000000002422

    Article  PubMed  Google Scholar 

  2. Behrendt D, Mütze M, Steinke H, Koestler M, Josten C, Böhme J (2012) Evaluation of 2D and 3D navigation for iliosacral screw fixation. Int J Comput Assist Radiol Surg 7(2):249–255. https://doi.org/10.1007/s11548-011-0652-7

    Article  PubMed  Google Scholar 

  3. van den Bosch EW, van Zwienen CM, van Vugt AB (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53:44–48

    Article  Google Scholar 

  4. Gänsslen A, Hüfner T, Krettek C (2006) Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol 18:225–244

    Article  Google Scholar 

  5. Gardner MJ, Routt ML Jr (2011) Transiliac-transsacral screws for posterior pelvic stabilization. J Orthop Trauma 25(6):378–384. https://doi.org/10.1097/BOT.0b013e3181e47fad

    Article  PubMed  Google Scholar 

  6. German Federal Department for Radiation Control (2010) Announcement on updated diagnostic reference levels for diagnostic and interventional radiologic examinations

    Google Scholar 

  7. Lucas JF, Routt ML Jr, Eastman JG (2017) A useful preoperative planning technique for transiliac-transsacral screws. J Orthop Trauma 31(1):e25–e31. https://doi.org/10.1097/BOT.0000000000000708

    Article  PubMed  Google Scholar 

  8. Mendel T, Noser H, Wohlrab D, Stock K, Radetzki F (2011) The lateral sacral triangle—a decision support for secure transverse sacroiliac screw insertion. Injury 42:1164–1170

    Article  CAS  Google Scholar 

  9. Richter PH, Gebhard F, Dehner C, Scola A (2016) Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 47(2):402–407. https://doi.org/10.1016/j.injury.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  10. Routt ML Jr, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: Early complications of the percutaneous technique. J Orthop Trauma 11:584–589

    Article  Google Scholar 

  11. Takao M, Nishii T, Sakai T, Sugano N (2013) CT-3D-fluoroscopy matching navigation can reduce the malposition rate of iliosacral screw insertion for less-experienced surgeons. J Orthop Trauma 27(12):716–721. https://doi.org/10.1097/BOT.0b013e31828fc4a5

    Article  PubMed  Google Scholar 

  12. Thakkar SC, Thakkar RS, Sirisreetreerux N, Carrino JA, Shafiq B, Hasenboehler EA (2017) 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg 12(1):69–76. https://doi.org/10.1007/s11548-016-1465-5

    Article  PubMed  Google Scholar 

  13. Tonetti J, Cazal C, Eid A, Badulescu A, Martinez T, Vouaillat H, Merloz P (2004) Neurological damage in pelvic injuries: a continuous prospective series of 50 pelvic injuries treated with an iliosacral lag screw. Rev Chir Orthop Reparatrice Appar Mot 90(2):122–131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Balling MD.

Ethics declarations

Conflict of interest

H. Balling declares that he has no competing interests.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). Informed consent was obtained from all patients included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Editor

D. Krappinger, Innsbruck

Illustrator

R. Himmelhan, Mannheim

The device (O‑arm) is U.S. Food and Drug Administration (FDA) approved or approved by a corresponding national agency for this indication.

This research was not sponsored by an organization. The author declares that he has full control of all primary data and allows the journal to review the data if requested.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balling, H. 3D image-guided surgery for fragility fractures of the sacrum. Oper Orthop Traumatol 31, 491–502 (2019). https://doi.org/10.1007/s00064-019-00629-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-019-00629-8

Keywords

Schlüsselwörter

Navigation