Skip to main content
Log in

Clinical, 3D Morphological, and Hemodynamic Risk Factors for Instability of Unruptured Intracranial Aneurysms

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Neurosurgeons can manage unruptured intracranial aneurysms (UIAs). However, the stability of UIAs under follow-up remains uncertain. This study aimed to examine the risk factors associated with the instability (rupture or growth) of UIAs during follow-up.

Methods

We obtained information on patients with UIA who underwent ≥ 6 months of the time of flight-magnetic resonance angiography (TOF-MRA) imaging follow-up in two centers. Computer-assisted semi-automated measurement (CASAM) techniques were used for recording morphological parameters and determining the growth of these aneurysms. We also recorded hemodynamic parameters at the beginning of the follow-up. The univariate and multivariate Cox regression analyses were performed to calculate hazard ratios with corresponding 95% confidence intervals for the clinical, morphological, and hemodynamic risk factors for aneurysm instability.

Results

A total of 304 aneurysms from 263 patients (80.4%) were included for analysis. The annual aneurysm growth rate was 4.7%. Significant predictive factors for aneurysm instability in the multivariate analysis were as follows: poorly controlled hypertension (hazard ratio (HR), 2.97 (95% CI, 1.27–6.98), P = 0.012); aneurysms located on posterior circulation (HR, 7.81 (95% CI, 2.28–26.73), P = 0.001), posterior communication artery (HR, 3.01 (95% CI, 1.07–8.46), P = 0.036), and cavernous carotid artery (HR, 3.78 (95% CI, 1.18–12.17), P = 0.026); and size ratio ≥ 0.87 (HR, 2.54 (95% CI, 1.14–5.68), P = 0.023).

Conclusions

The management of UIAs should focus on the control of hypertension during the follow-up. Aneurysms on the posterior communicating artery, posterior circulation, and cavernous carotid arteries require intensive surveillance or timely treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vlak MHM, Algra AP, Brandenburg RB, Rinkel GJP. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–636. https://doi.org/10.1016/S1474-4422(11)70109‑0.

  2. Li MH, Chen SW, Li YD, Chen YC, Cheng YS, Hu DJ, Tan HQ, Wu Q, Wang W, Sun ZK, Wei XE, Zhang JY, Qiao RH, Zong WH, Zhang Y, Lou W, Chen ZY, Zhu Y, Peng DR, Ding SX, Xu XF, Hou XH, Jia WP. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med. 2013;159: 514–521. https://doi.org/10.7326/0003-4819-159-8-201310150-00004.

  3. Lawton MT, Vates GE. Subarachnoid hemorrhage. N Engl J Med. 2017;377(3):257–66. https://doi.org/10.1056/NEJMcp1605827.

    Article  PubMed  Google Scholar 

  4. Nieuwkamp DJM, Setz LEM, Algra AM, Linn FHM, de Rooij NKM, Rinkel GJM. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–642. https://doi.org/10.1016/S1474-4422(09)70126‑7.

  5. Thompson BG, Brown RD, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES, Duckwiler GR, Harris CC, Howard VJ, Johnston SCC, Meyers PM, Molyneux A, Ogilvy CS, Ringer AJ, Torner J. Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms. Stroke. 2015;46:2368–400. https://doi.org/10.1161/STR.0000000000000070.

    Article  PubMed  Google Scholar 

  6. International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms—risk of rupture and risks of surgical intervention. N Engl J Med. 1998;339:1725–33. https://doi.org/10.1056/NEJM199812103392401.

  7. Darsaut TE, Findlay JM, Magro E, Kotowski M, Roy D, Weill A, Bojanowski MW, Chaalala C, Iancu D, Lesiuk H, Sinclair J, Scholtes F, Martin D, Chow MM, O Kelly CJ, Wong JH, Butcher K, Fox AJ, Arthur AS, Guilbert F, Tian L, Chagnon M, Nolet S, Gevry G, Raymond J. Surgical clipping or endovascular coiling for unruptured intracranial aneurysms: a pragmatic randomised trial. J Neurol Neurosurg Psychiatry. 2017;88:663–668. https://doi.org/10.1136/jnnp-2016-315433.

  8. Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y, Takao H, Ishibashi T, Igase M, Terbrugge KG, Agid R, Jääskeläinen JE, Lindgren AE, Koivisto T, von Und Zu Fraunberg M, Matsubara S, Moroi J, Wong GKC, Abrigo JM, Igase K, Matsumoto K, Wermer MJH, van Walderveen MAA, Algra A, Vergouwen MDI. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology. 2017;88:1600–6. https://doi.org/10.1212/WNL.0000000000003865.

    Article  PubMed  Google Scholar 

  9. Bor ASE, Tiel Groenestege AT, Terbrugge KG, Agid R, Velthuis BK, Rinkel GJE, Wermer MJH. Clinical, radiological, and flow-Related risk factors for growth of untreated, unruptured intracranial aneurysms. Stroke. 2015;46:42–8. https://doi.org/10.1161/STROKEAHA.114.005963.

    Article  PubMed  Google Scholar 

  10. Weng J, Wang J, Li H, Jiao Y, Fu W, Huo R, Yan Z, Xu H, Zhan J, Wang S, Du X, Cao Y, Zhao J. Aspirin and growth of small unruptured intracranial aneurysm. Stroke. 2020;51:3045–54. https://doi.org/10.1161/STROKEAHA.120.029967.

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Weng J, Li H, Jiao Y, Fu W, Huo R, Yan Z, Xu H, Zhan J, Wang S, Du X, Cao Y, Zhao J. Atorvastatin and growth, rupture of small unruptured intracranial aneurysm: results of a prospective cohort study. Ther Adv Neurol Disord. 2021;14:1160569239. https://doi.org/10.1177/1756286420987939.

    Article  CAS  Google Scholar 

  12. Geng J, Hu P, Ji Z, Li C, Li L, Shen J, Feng X, Wang W, Yang G, Li J, Zhang H. Accuracy and reliability of computer-assisted semi-automated morphological analysis of intracranial aneurysms: an experimental study with digital phantoms and clinical aneurysm cases. Int J Comput Assist Radiol Surg. 2020;15:1749–59. https://doi.org/10.1007/s11548-020-02218-8.

    Article  PubMed  Google Scholar 

  13. Zhai X, Geng J, Zhu C, Yu J, Li C, Jiang N, Xiang S, Fang G, Hu P, Zhang H. Risk factors for pericallosal artery aneurysm rupture based on morphological computer-assisted semiautomated measurement and hemodynamic analysis. Front Neurosci. 2021; https://doi.org/10.3389/fnins.2021.759806.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cebral JR, Mut F, Weir J, Putman C. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 2011;32:145–51. https://doi.org/10.3174/ajnr.A2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lauric A, Miller EL, Baharoglu MI, Malek AM. 3D shape analysis of intracranial aneurysms using the writhe number as a discriminant for rupture. Ann Biomed Eng. 2011;39:1457–69. https://doi.org/10.1007/s10439-010-0241-x.

    Article  PubMed  Google Scholar 

  16. Xu W, Wang H, Wu Q, Wen L, You Z, Yuan B, Chen S, Wang H, Zhang X. Morphology parameters for rupture in middle cerebral artery mirror aneurysms. J Neurointerv Surg. 2020;12:858–61. https://doi.org/10.1136/neurintsurg-2019-015620.

    Article  PubMed  Google Scholar 

  17. Chen Y, Xing H, Lin B, Zhou J, Ding S, Wan J, Yang Y, Pan Y, Zhao B. Morphological risk model assessing anterior communicating artery aneurysm rupture: Development and validation. Clin Neurol Neurosurg. 2020;197:106158. https://doi.org/10.1016/j.clineuro.2020.106158.

    Article  PubMed  Google Scholar 

  18. Baharoglu MI, Schirmer CM, Hoit DA, Gao B, Malek AM. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms. Stroke. 2010;41:1423–30. https://doi.org/10.1161/STROKEAHA.109.570770.

    Article  PubMed  Google Scholar 

  19. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008;63:185–96. https://doi.org/10.1227/01.NEU.0000316847.64140.81. discussion 196–197.

    Article  PubMed  Google Scholar 

  20. Li M, Hu S, Yu N, Zhang Y, Luo M. Association between meteorological factors and the rupture of intracranial aneurysms. J Am Heart Assoc. 2019; https://doi.org/10.1161/JAHA.119.012205.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ujiie H, Tamano Y, Sasaki K, Hori T. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery. 2001;48:495–502. https://doi.org/10.1097/00006123-200103000-00007. discussion 502–503.

    Article  CAS  PubMed  Google Scholar 

  22. Hu P, Qian Y, Lee C, Zhang H, Ling F. The energy loss may predict rupture risks of anterior communicating aneurysms: a preliminary result. Int J Clin Exp Med. 2015;8:4128–33.

    PubMed  PubMed Central  Google Scholar 

  23. Hu P, Qian Y, Zhang Y, Zhang H, Li Y, Chong W, et al. Blood flow reduction of covered small side branches after flow diverter treatment: A computational fluid hemodynamic quantitative analysis. J Biomech. 2015;48:895–898. https://doi.org/10.1016/j.jbiomech.2015.02.015.

  24. Qin H, Yang Q, Zhuang Q, Long J, Yang F, Zhang H. Morphological and hemodynamic parameters for middle cerebral artery bifurcation aneurysm rupture risk assessment. J Korean Neurosurg Soc. 2017;60:504–10. https://doi.org/10.3340/jkns.2017.0101.009.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soldozy S, Norat P, Elsarrag M, Chatrath A, Costello JS, Sokolowski JD, Tvrdik P, Kalani MYS, Park MS. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus. 2019;47:e11. https://doi.org/10.3171/2019.4.FOCUS19232.

    Article  PubMed  Google Scholar 

  26. Yuan J, Li Z, Jiang X, Lai N, Wang X, Zhao X, Wu D, Liu J, Xia D, Huang C, Fang X. Hemodynamic and morphological differences between unruptured carotid-posterior communicating artery bifurcation aneurysms and infundibular dilations of the posterior communicating artery. Front Neurol. 2020;11:741. https://doi.org/10.3389/fneur.2020.00741.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cho K, Choi JH, Oh JH, Kim YB. Prediction of thin-walled areas of unruptured cerebral aneurysms through comparison of normalized hemodynamic parameters and intraoperative images. Biomed Res Int. 2018;2018:1–9. https://doi.org/10.1155/2018/3047181.

    Article  Google Scholar 

  28. Himburg HA, Dowd SE, Friedman MH. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am J Physiol Heart Circ Physiol. 2007;293:h645–653. https://doi.org/10.1152/ajpheart.01087.2006.

  29. Cebral JR, Chung BJ, Mut F, Chudyk J, Bleise C, Scrivano E, Lylyk P, Kadirvel R, Kallmes D. Analysis of flow dynamics and outcomes of cerebral aneurysms treated with intrasaccular flow-diverting devices. AJNR Am J Neuroradiol. 2019;40:1511–6. https://doi.org/10.3174/ajnr.A6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, Song Y, Shi Y, Zhang H, Gong M, Wei C, Tang Y, Fang B, Guo D, Wang F, Zhou A, Chu C, Zuo X, Yu Y, Yuan Q, Wang W, Li F, Shi S, Yang H, Zhou C, Liao Z, Lv Y, Li Y, Kan M, Zhao H, Wang S, Yang S, Li H, Liu Z, Wang Q, Qin W, Jia J, Quan M, Wang Y, Li W, Cao S, Xu L, Han Y, Liang J, Qiao Y, Qin Q, Qiu Q, Coast G. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020;5:e661–671. https://doi.org/10.1016/S2468-2667(20)30185‑7.

  31. Backes D, Rinkel GJE, Laban KG, Algra A, Vergouwen MDI. Patient- and aneurysm-Specific risk factors for intracranial aneurysm growth. Stroke. 2016;47:951–7. https://doi.org/10.1161/STROKEAHA.115.012162.

    Article  PubMed  Google Scholar 

  32. Villablanca JP, Duckwiler GR, Jahan R, Tateshima S, Martin NA, Frazee J, Gonzalez NR, Sayre J, Vinuela FV. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology. 2013;269:258–65. https://doi.org/10.1148/radiol.13121188.

    Article  PubMed  Google Scholar 

  33. Mitchell P, Gholkar A, Vindlacheruvu RR, David MA. Unruptured intracranial aneurysms: benign curiosity or ticking bomb? Lancet Neurol. 2004;3:85–92. https://doi.org/10.1016/s1474-4422(03)00661-6.

  34. Rinkel GJ, Djibuti M, Algra A, van Gijn J. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke. 1998;29:251–256. https://doi.org/10.1161/01.str.29.1.251.

  35. Tremmel M, Dhar S, Levy EI, Mocco J, Meng H, Findlay JM, Nozaki K, Komotar RJ, Sander Connolly E, Loch Macdonald R. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery. 2009;64:622–630; discussion 630–631. https://doi.org/10.1227/01.NEU.0000341529.11231.69.

  36. Goto Y, Hosokawa S, Goto I, Hirakata R, Hasuo K. Abnormality in the cavernous sinus in three patients with Tolosa-Hunt syndrome: MRI and CT findings. J Neurol Neurosurg Psychiatry. 1990;53:231–4. https://doi.org/10.1136/jnnp.53.3.231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Zhaoyang Lin for their assistance with professional language editing.

Funding

This study was supported by the ‘National Key R&D program of China (grant nos. 2016YFC1300800)’ and the ‘Beijing Municipal Administration of Hospitals’ Ascent Plan (grant nos. DFL20180801)’ and the ’Beijing Scientific and Technologic Project (grant nos. Z201100005520021)’.

Author information

Authors and Affiliations

Authors

Contributions

J. Geng: conceived and designed the research, performed statistical analysis and wrote the original version of the manuscript, collected the data; H. Zhang: conceived and designed the research, handled funding and supervision; S. Wang drafted the final submitted version, collected the data; W. Wang: designed the algorithm, responsible for measurement data; G. Fang: designed the algorithm, responsible for measurement data; G. Yang: designed the algorithm, responsible for measurement data; Y. Wang: collected the data; X. Fan: collected the data; P. Hu: handled funding and supvervision; C. He: handled funding and supervision. All authors made critical revisions of the manuscript.

Corresponding author

Correspondence to Hongqi Zhang.

Ethics declarations

Conflict of interest

J. Geng, S. Wang,Y. Wang, W. Wang, G. Fang, G. Yang, X. Fan, P. Hu, C. He and H. Zhang declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by our institutional ethics committee (N0.2017024 and No.2017082). Informed consent was obtained from all individual participants included in the study.

Additional information

The authors Jiewen Geng and Simin Wang contributed equally to this article.

Availability of data

Data are available upon reasonable request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, J., Wang, S., Wang, Y. et al. Clinical, 3D Morphological, and Hemodynamic Risk Factors for Instability of Unruptured Intracranial Aneurysms. Clin Neuroradiol 33, 1133–1142 (2023). https://doi.org/10.1007/s00062-023-01324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-023-01324-9

Keywords

Navigation