Skip to main content
Log in

New Concept of Patient-specific Flow Diversion Treatment of Intracranial Aneurysms

Design Aspects and in vitro Fluid Dynamics

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Current flow diverter (FD) designs limit the possibilities to achieve ideal functional parameters for intra-aneurysmal flow alteration in the implanted state. In this work, we evaluate the technical feasibility of a new patient-specific FD concept and the impact on intra-aneurysmal flow reduction compared to standard FD.

Methods

Based on a literature review, we defined functional requirements, followed by the design and manufacturing of two different prototypes, which we implanted in a patient-specific phantom model. Functional porosity distributions and contour parameters were evaluated in the implanted state and compared to standard FD. Subsequently, we carried out a series of particle image velocimetry (PIV) measurements, in order to assess the impact on intra-aneurysmal flow.

Results

With both patient-specific prototypes, it was possible to achieve stronger intra-aneurysmal flow reductions in terms of maximum and mean velocity and vorticity than a standard FD; however, one design showed a strong sensitivity against malpositioning. Overall, fluid dynamics parameters correlated with geometrical aspects such as the porosity and its grade of homogeneity. Beyond that, we found influences by the FD contour projection within the aneurysm, especially connected to the formation of in-jets.

Conclusion

Our results show that there is a technically feasible concept, which enables a more specific adjustment of functional FD parameters and more effective intra-aneurysmal flow reduction. This could potentially lead to improvements in the efficacy of aneurysm occlusion in cases with challenging fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

FD:

Flow diverter

IFD:

Individualized flow diverter

PIV:

Particle imaging velocimetry

WSS:

Wall shear stress

References

  1. Briganti F, Leone G, Marseglia M, Mariniello G, Caranci F, Brunetti A, Maiuri F. Endovascular treatment of cerebral aneurysms using flow-diverter devices: a systematic review. Neuroradiol J. 2015;28:365–75.

    Article  Google Scholar 

  2. Zhou G, Su M, Yin YL, Li MH. Complications associated with the use of flow-diverting devices for cerebral aneurysms: a systematic review and meta-analysis. Neurosurg Focus. 2017;42:E17.

    Article  Google Scholar 

  3. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke. 2007;38:2346–52.

    Article  Google Scholar 

  4. Shapiro M, Raz E, Becske T, Nelson PK. Variable porosity of the pipeline embolization device in straight and curved vessels: a guide for optimal deployment strategy. AJNR Am J Neuroradiol. 2014;35:727–33.

    Article  CAS  Google Scholar 

  5. Makoyeva A, Bing F, Darsaut TE, Salazkin I, Raymond J. The varying porosity of braided self-expanding stents and flow diverters: an experimental study. AJNR Am J Neuroradiol. 2013;34:596–602.

    Article  CAS  Google Scholar 

  6. Huang Q, Xu J, Cheng J, Wang S, Wang K, Liu JM. Hemodynamic changes by flow diverters in rabbit aneurysm models: a computational fluid dynamic study based on micro-computed tomography reconstruction. Stroke. 2013;44:1936–41.

    Article  Google Scholar 

  7. Cebral JR, Mut F, Raschi M, Hodis S, Ding YH, Erickson BJ, Kadirvel R, Kallmes DF. Analysis of hemodynamics and aneurysm occlusion after flow-diverting treatment in rabbit models. AJNR Am J Neuroradiol. 2014;35:1567–73.

    Article  CAS  Google Scholar 

  8. Chong W, Zhang Y, Qian Y, Lai L, Parker G, Mitchell K. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: correlation with clinical outcomes. AJNR Am J Neuroradiol. 2014;35:136–42.

    Article  CAS  Google Scholar 

  9. Ouared R, Larrabide I, Brina O, Bouillot P, Erceg G, Yilmaz H, Lovblad KO, Mendes Pereira V. Computational fluid dynamics analysis of flow reduction induced by flow-diverting stents in intracranial aneurysms: a patient-unspecific hemodynamics change perspective. J Neurointerv Surg. 2016;8:1288–93.

    Article  Google Scholar 

  10. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39:2997–3002.

    Article  Google Scholar 

  11. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42:144–52.

    Article  Google Scholar 

  12. Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35:1254–62.

    Article  CAS  Google Scholar 

  13. Gester K, Lüchtefeld I, Büsen M, Sonntag SJ, Linde T, Steinseifer U, Cattaneo G. In vitro evaluation of intra-aneurysmal, flow-diverter-induced thrombus formation: a feasibility study. AJNR Am J Neuroradiol. 2016;37:490–6.

    Article  CAS  Google Scholar 

  14. Clauser J, Knieps MS, Büsen M, Ding A, Schmitz-Rode T, Steinseifer U, Arens J, Cattaneo G. A novel plasma-based fluid for particle image velocimetry (PIV): in-vitro feasibility study of flow diverter effects in aneurysm model. Ann Biomed Eng. 2018;46:841–8.

    Article  Google Scholar 

  15. Bouillot P, Brina O, Ouared R, Lovblad K‑O, Farhat M, Pereira VM. Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One. 2014;9:e113762.

    Article  Google Scholar 

  16. Zhang Y, Wang Y, Kao E, Flórez-Valencia L, Courbebaisse G. Towards optimal flow diverter porosity for the treatment of intracranial aneurysm. J Biomech. 2019;82:20–7.

    Article  Google Scholar 

  17. Zhang M, Anzai H, Chopard B, Ohta M. Towards the patient-specific design of flow diverters made from helix-like wires: an optimization study. Biomed Eng Online. 2016;15(Suppl 2):159.

    Article  Google Scholar 

  18. Augsburger L, Farhat M, Reymond P, Fonck E, Kulcsar Z, Stergiopulos N, Rüfenacht DA. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin Neuroradiol. 2009;19:204–14.

    Article  Google Scholar 

  19. Shojima M. Basic fluid dynamics and tribia related to flow diverter. J Neuroendovasc Ther. 2017;11:109–16.

    Article  Google Scholar 

  20. Larrabide I, Geers AJ, Morales HG, Aguilar ML, Rüfenacht DA. Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment. J Neurointervent Surg. 2015;7:272–80.

    Article  Google Scholar 

  21. Shapiro M, Raz E, Becske T, Nelson PK. Building multidevice pipeline constructs of favorable metal coverage: a practical guide. AJNR Am J Neuroradiol. 2014;35:1556–61.

    Article  CAS  Google Scholar 

  22. Cattaneo GFM, Ding A, Jost T, Ley D, Mühl-Bennighaus R, Yilmaz U, Körner H, Reith W, Simgen A. In vitro, contrast agent-based evaluation of the influence of flow diverter size and position on intra-aneurysmal flow dynamics using syngo iFlow. Neuroradiology. 2017;59:1275–83.

    Article  Google Scholar 

  23. Janiga G, Daróczy L, Berg P, Thévenin D, Skalej M, Beuing O. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms. J Biomech. 2015;48:3846–52.

    Article  Google Scholar 

  24. Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35:648–54.

    Article  Google Scholar 

  25. Correia de Verdier M, Wikström J. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging. Neuroradiology. 2016;58:521–31.

    Article  Google Scholar 

  26. Ravindran K, Casabella AM, Cebral J, Brinjikji W, Kallmes DF, Kadirvel R. Mechanism of action and biology of flow diverters in the treatment of Intracranial aneurysms. Neurosurgery. 2020;86(Supplement_1):S13-9.

    Article  Google Scholar 

  27. Bouillot P, Brina O, Ouared R, Lovblad K‑O, Farhat M, Pereira VM. Hemodynamic transition driven by stent porosity in sidewall aneurysms. J Biomech. 2015;48:1300–9.

    Article  Google Scholar 

  28. Berg P, Iosif C, Ponsonnard S, Yardin C, Janiga G, Mounayer C. Endothelialization of over- and undersized flow-diverter stents at covered vessel side branches: an in vivo and in silico study. J Biomech. 2016;49:4–12.

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the ac.biomed GmbH, Aachen, Germany, who carried out the experiments and provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper.

Funding

This work was supported by the German Federal Ministry of Education and Research; grant number FKZ (13GW0274A-D).

Author information

Authors and Affiliations

Authors

Contributions

A. Ding: conception and main execution of the work and drafting the manuscript. A. Braschkat: substantial contribution to the acquisition and analysis of the work and revising the manuscript. A. Guber: substantial contributions to the interpretation of the work and revising it critically for important intellectual content. G. Cattaneo: substantial contributions to the design of the work and interpretation of results. Critical revision of the work for important intellectual content.

Corresponding author

Correspondence to Andreas Ding.

Ethics declarations

Conflict of interest

A. Ding and A. Braschkat are employees of the Acandis GmbH, which financed the remaining costs, not covered by the public funding. A. Ding reports grants from the German Federal Ministry of Education and Research, during the conduct of the study. In addition, A. Ding has a patent system and procedure for braiding patient-specific stents (“Verfahren zum Flechten eines patientenspezifisch angepassten Stents”) pending to Acandis GmbH. A. Guber and G. Cattaneo declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, A., Braschkat, A., Guber, A. et al. New Concept of Patient-specific Flow Diversion Treatment of Intracranial Aneurysms. Clin Neuroradiol 31, 671–679 (2021). https://doi.org/10.1007/s00062-020-00930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-020-00930-1

Keywords

Navigation