Skip to main content

Advertisement

Log in

Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Differential diagnosis of acute and subacute transverse myelopathy includes inflammatory, infectious, vascular, metabolic and paraneoplastic etiologies. Information on the diagnostic approach to transverse myelopathy with regard to daily clinical practice is provided. The differentiation between five lesion patterns on magnetic resonance imaging (MRI) in myelitis may be helpful: (1) longitudinal extensive transverse myelitis, (2) short segment ovoid or peripherally located, (3) “polio-like”, (4) granulomatous and (5) segmental with rash. A correlation with these imaging features is supported if the clinical course and neurological symptoms are known. Although the mean interval from onset to nadir of symptoms in spinal cord infarction is 1 h, an overlap with a fulminant course of myelitis is possible, and impaired diffusion may also occur in acute inflammatory processes. As a result, laboratory testing, including aquaporin-4 antibodies and cerebrospinal fluid analysis, is crucial for the correct interpretation of imaging findings. Moreover, the discrimination of acute complete and acute partial transverse myelitis is advantageous in order to identify diverse entities, the latter often being a precursor to multiple sclerosis. Additional brain imaging is mandatory in suspected demyelinating, infectious, neoplastic and systemic autoimmune disease. A symmetrical lesion pattern restricted to individual tracts or dorsal columns indicates subacute combined degeneration of the spinal cord and, in addition to deficiency syndromes, a paraneoplastic etiology should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schmalstieg W, Weinshenker BG. Approach to acute or subacute myelopathy. Neurology. 2010;75:S2–8.

    Article  PubMed  Google Scholar 

  2. Jacob A, Weinshenker BG. An approach to the diagnosis of acute transverse myelitis. Semin Neurol. 2008;28:105–20.

    Article  PubMed  Google Scholar 

  3. Nichtweiß M, Weidauer S. Differential diagnosis of acute myelopathies: an update. Clin Neuroradiol. 2015;25(Suppl):183–7.

    Article  PubMed  Google Scholar 

  4. Seidenwurm DJ, Expert Panel on Neurologic Imaging. Myelopathy. AJNR Am J Neuroradiol. 2008;29:1032–4.

    PubMed  Google Scholar 

  5. Goh C, Phal PM, Desmond PM. Neuroimaging in acute transvers myelitis. Neuroimaging Clin N Am. 2011;21:951–73.

    Article  PubMed  Google Scholar 

  6. Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging. 2014;40:1267–79.

    Article  PubMed  Google Scholar 

  7. Morales H, Betts A. Abnormal spinal cord magnetic resonance signal: approach to the differential diagnosis. Semin Ultrasound CT MR. 2016;37:372–83.

    Article  PubMed  Google Scholar 

  8. West TW, Hess C, Cree BAC. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies. Semin Neurol. 2012;32:97–113.

    Article  PubMed  Google Scholar 

  9. Mirbagheri S, Eckart Sorte D, Zamora CA, Mossa-Basha M, Newsome SD, Izbudak I. Evaluation and management of longitudinally extensive transverse myelitis: a guide for radiologists. Clin Radiol. 2016;71:960–71.

    Article  CAS  PubMed  Google Scholar 

  10. Scott TF. Nosology of idiopathic transverse myelitis syndromes. Acta Neurol Scand. 2007;115:371–6.

    Article  PubMed  Google Scholar 

  11. Yiu EM, Kornberg AJ, Ryan MM, Coleman LT, Mackay MT. Acute transverse myelitis and acute disseminated encephalomyelitis in childhood: spectrum or separate entities? J Child Neurol. 2009;24:287–96.

    Article  PubMed  Google Scholar 

  12. The Transverse Myelitis Consortium Working Group Members. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology. 2002;59:499–505.

    Article  Google Scholar 

  13. Meyer P, Leboucq N, Molinari N, Roubertie A, Carneiro M, Walther-Louvier U, Cuntz-Shadfar D, Leydet J, Cheminal R, Cambonie G, Echenne B, Rondouin G, Deiva K, Mikaeloff Y, Rivier F. Partial acute transverse myelitis is a predictor of multiple sclerosis in children. Mult Scler. 2014;20:1485–93.

    Article  CAS  PubMed  Google Scholar 

  14. Lazorthes G. Pathology, classification and clinical aspects of vascular diseases in spinal cord. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology vol 12. Amsterdam: North Holland; 1972. pp. 492–506.

    Google Scholar 

  15. Martirosyan N, Feuerstein J, Theodore N, Cavalcanti D, Spetzler R, Preul M. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine. 2011;15:238–51.

    Article  PubMed  Google Scholar 

  16. Thron AK. Vascular anatomy of the spinal cord. Neuroradiological investigations and clinical syndromes. Heidelberg Wien New York: Springer; 1988.

    Book  Google Scholar 

  17. Turnbull IM, Brieg A, Hassler O. Blood supply of cervical spinal cord in man. A microangiographic cadaver study. J Neurosurg. 1966;24:951–65.

    Article  CAS  PubMed  Google Scholar 

  18. Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE. Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology. 2002;44:851–7.

    Article  PubMed  Google Scholar 

  19. Weidauer S, Nichtweiß M, Hattingen E, Berkefeld J. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology. 2015;75:241–57.

    Article  Google Scholar 

  20. Yuh WT, Marsh EE 3rd, Wang AK, Russell JW, Chiang F, Koci TM, Ryals TJ. MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol. 1992;13:145–54.

    CAS  PubMed  Google Scholar 

  21. Vuong SM, Jeong WJ, Morales H, Abruzzo TA. Vascular diseases of the spinal cord: infarction, hemorrhage, and venous congestive myelopathy. Semin Ultrasound CT MR. 2016;37:466–81.

    Article  PubMed  Google Scholar 

  22. Nedeltchev K, Loher TJ, Stepper F, Arnold M, Schroth G, Mattle HP, Sturzenegger M. Longterm outcome of acute spinal cord ischemia syndrome. Stroke. 2004;35:560–5.

    Article  PubMed  Google Scholar 

  23. Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21:299–320.

    Article  PubMed  Google Scholar 

  24. Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48:795–801.

    Article  PubMed  Google Scholar 

  25. Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17:225–44.

    Article  PubMed  Google Scholar 

  26. Marcel C, Kremer S, Jeantroux J, Blanc F, Dietemann JL, De Sèze J. Diffusion-weighted imaging in noncompressive myelopathies: a 33-patient prospective study. J Neurol. 2010;257:1438–45.

    Article  PubMed  Google Scholar 

  27. Weidauer S, Gartenschläger M, Claus D. Spinal sulcal artery syndrome due to bilateral vertebral artery dissection. J Neurol Neurosurg Psychiatry. 1999;67:550–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caplan LR, Zarins ZK, Hemmati M. Spontaneous dissection of the extracranial vertebral arteries. Stroke. 1985;16:1030–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bergqvist C, Goldberg HI, Thorarensen O, Bird SJ. Posterior cervical spinal cord infarction following vertebral artery dissection. Neurology. 1997;48:1112–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hundsberger T, Thömke F, Hopf HC, Fitzek C. Symmetrical infarction of the cervical spinal cord due to spontaneous bilateral vertebral artery dissection. Stroke. 1998;29:1742.

    Article  CAS  PubMed  Google Scholar 

  31. Pullicino P. Bilateral upper limb amyotrophy and watershed infarcts from vertebral artery dissection. Stroke. 1994;25:1870–2.

    Article  CAS  PubMed  Google Scholar 

  32. Richard S, Abdallah R, Chanson A, Foscolo S, Baillot PA, Ducrocq X. Unilateral posterior cervical spinal cord infarction due to spontaneous vertebral artery dissection. J Spinal Cord Med. 2014;37:233–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Piao YS, Lu DH, Su YY, Yang XP. Anterior spinal cord infarction caused by fibrocartilaginous embolism. Neuropathology. 2009;29:172–5.

    Article  PubMed  Google Scholar 

  34. Tosi L, Rigoli G, Beltramello A. Fibrocartilaginous embolism of the spinal cord: a clinical and pathogenetic reconsideration. J Neurol Neurosurg Psychiatry. 1996;60:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shuster A, Franchetto A. Surfer’s myelopathy – an unusual cause of acute spinal ischemia: a case report and review of the literature. Emerg Radiol. 2011;18:57–60.

    Article  PubMed  Google Scholar 

  36. Hennedige T, Chow W, Ng YY, Chung-Tsing GC, Lim TCC, Kei PL. MRI in spinal cord compression sickness. J Med Imaging Radiat Oncol. 2012;56:282–8.

    Article  PubMed  Google Scholar 

  37. Tanaka H, Minatoya K, Matsuda H, Sasaki H, Iba Y, Oda T, Kobayashi J. Embolism is emerging as a major cause of spinal cord injury after descending and thoracoabdominal aortic repair with a contemporary approach: magnetic resonance findings of spinal cord injury. Interact Cardiovasc Thorac Surg. 2014;19:205–10.

    Article  PubMed  Google Scholar 

  38. Popescu A, Lai D, Lu A, Gardner K. Stroke following epidural injections – case report and review of literature. J Neuroimaging. 2013;23:118–21.

    Article  PubMed  Google Scholar 

  39. Diaz E, Morales H. Spinal cord anatomy and clinical syndromes. Semin Ultrasound CT MR. 2016;37:360–71.

    Article  PubMed  Google Scholar 

  40. Mercier P, Brassier G, Fournier D, Hentati N, Pasco-Papon A, Papon X. Predictability of the cervical origin of the anterior spinal artery. Interv Neuroradiol. 1997;20:283–8.

    Article  Google Scholar 

  41. Goldsmith P, Rowe D, Jäger R, Kapoor R. Focal vertebral artery dissection causing Brown – Séquard’s syndrome. J Neurol Neurosurg Psychiatry. 1998;64:415–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laufs H, Weidauer S, Heller C, Lorenz M, Neumann-Haefelin T. Hemi-spinal cord infarction due to vertebral artery dissection in congenital afibrinogenemia. Neurology. 2004;63:1522–3.

    Article  CAS  PubMed  Google Scholar 

  43. Lipper MH, Goldstein JH, Do HM. Brown – Séquard syndrome of the cervical spinal cord after chiropractic manipulation. AJNR Am J Neuroradiol. 1998;19:1349–52.

    CAS  PubMed  Google Scholar 

  44. Murata K, Ikeda K, Muto M, Hirajama T, Kano O, Iwasaki Y. A case of posterior spinal artery syndrome in the cervical cord: a review of the clinicoradiological literature. Intern Med. 2012;51:803–7.

    Article  PubMed  Google Scholar 

  45. Kaneki M, Inoue K, Shimizu T, Mannen T. Infarction of the unilateral posterior horn and lateral column of the spinal cord with sparing of posterior columns: demonstration by MRI. J Neurol Neurosurg Psychiatry. 1994;57:629–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hathout L, El-Saden S. Nitrous oxide-induced B 12 deficiency myelopathy: perspectives on the clinical biochemistry of vitamin B 12. J Neurol Sci. 2011;301:1–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar N. Metabolic and toxic myelopathies. Semin Neurol. 2012;32:123–36.

    Article  PubMed  Google Scholar 

  48. Nichtweiß M, Hattingen E, Weidauer S. Metabolic-toxic diseases and atrophic changes of the spinal cord. In: Hattingen E, Weidauer S, Setzer M, Klein J, Vrionis K, editors. Diseases of the spinal cord – novel imaging, diagnosis and treatment. Heidelberg: Springer; 2015. pp. 369–87.

    Google Scholar 

  49. Ramalho J, Hoffmann Nunes R, da Rocha AJ, Castillo M. Toxic and metabolic myelopathies. Semin Ultrasound CT MR. 2016;37:448–65.

    Article  PubMed  Google Scholar 

  50. Gelfan S, Tarlov IM. Differential vulnerability of spinal cord structures to anoxia. J Neurophysiol. 1955;18:170–88.

    CAS  PubMed  Google Scholar 

  51. Berg D, Mullges W, Klotzenburg M, Bendszus M, Reiners K. Man-in-the-barrel syndrome caused by cervical spinal cord infarction. Acta Neurol Scand. 1998;97:417–9.

    Article  CAS  PubMed  Google Scholar 

  52. Urban P, Gawehn J, Ringel K. “Man-in-the-barrel” syndrome. Clin Neuroradiol. 2005;15:190–4.

    Article  Google Scholar 

  53. Lebouteux MV, Franques J, Guillevin R, Delmont E, Lenglet T, Bede P, et al. Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur J Neurol. 2014;21:1233–41.

    Article  PubMed  Google Scholar 

  54. Desai JA, Melanson M. Teaching neuroimages: anterior horn cell hyperintensity in Hirayama disease. Neurology. 2011;77:e73.

    Article  PubMed  Google Scholar 

  55. Hirayama K. Juvenile muscular atrophy of the upper extremity (Hirayama disease). Intern Med. 2000;39:283–90.

    Article  CAS  PubMed  Google Scholar 

  56. Kira J, Isobe N, Kawano Y, Osoegawa M, Ohyagi Y, Mihara F, Murai H. Atopic myelitis with focal amyotrophy: a possible link to Hopkins syndrome. J Neurol Sci. 2008;269:143–51.

    Article  PubMed  Google Scholar 

  57. Maloney JA, Mirsky DM, Messacar K, Dominguez SR, Schreiner T, Stence NV. MRI findings in children with acute flaccid paralysis and cranial nerve dysfunction occurring during the 2014 Enterovirus D68 outbreak. AJNR Am J Neuroradiol. 2015;36:245–50.

    Article  CAS  PubMed  Google Scholar 

  58. Krampla W, Aboul-Enein F, Jecel J, Lang W, Fertl E, Hruby W, Kristoferitsch W. Spinal cord lesions in patients with neuromyelitis optica: a retrospective long-term MRI follow-up study. Eur Radiol. 2009;19:2535–43.

    Article  PubMed  Google Scholar 

  59. Nichtweiß M, Hattingen E, Weidauer S. Inflammation of the spinal cord. In: Hattingen E, Weidauer S, Setzer M, Klein J, Vrionis K, editors. Diseases of the spinal cord – novel imaging, diagnosis and treatment. Heidelberg: Springer; 2015. pp. 315–68.

    Google Scholar 

  60. Yeung SC, Antonio G, Ip KS. Flaccid paralysis of the limbs after an asthmatic attack. Pediatr Neurol. 2010;42:133–6.

    Article  PubMed  Google Scholar 

  61. Holland NR. Acute myelopathy with normal imaging. J Child Neurol. 2013;28:648–50.

    Article  PubMed  Google Scholar 

  62. Alblas CL, Bouvy WH, Lycklama À, Nijeholt GJ, Boiten J. Acute spinal cord ischemia: evolution of MRI findings. J Clin Neurol. 2012;8:218–23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krings T. Vascular malformations of the spine and spinal cord. Clin Neuroradiol. 2010;20:5–24.

    Article  PubMed  Google Scholar 

  64. Atkinson JL, Miller GM, Krauss WE, Marsh WR, Piepgras DG, Atkinson PP, Brown RD Jr, Lane JI. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc. 2001;76:1120–30.

    Article  CAS  PubMed  Google Scholar 

  65. Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol. 2007;28:1249–58.

    Article  CAS  PubMed  Google Scholar 

  66. Kimura A1, Tan CF, Wakida K, Saio M, Hozumi I, Inuzuka T, Takahashi H. Venous congestive myelopathy of the cervical spinal cord: an autopsy case showing a rapidly progressive clinical course. Neuropathology. 2007;27:284–9.

    Article  PubMed  Google Scholar 

  67. Deiva K, Absoud M, Hemingway C, Hernandez Y, Hussson B, Maurey H, Niotakis G, Wassmer E, Lim M, Tardieu M; United Kingdom Childhood Inflammatory Demyelination (UK-CID) Study and French Kidbiosep Study. Acute idiopathic myelitis in children. Early predictors of relapse and disability. Neurology. 2015;84:341–9.

    Article  PubMed  Google Scholar 

  68. Debette S, de Sèze J, Pruvo JP, Zephir H, Pasquier F, Leys D, Vermersch P. Long-term outcome of acute and subacute myelopathies. J Neurol. 2009;256:980–8.

    Article  CAS  PubMed  Google Scholar 

  69. Rovira A, Auger C. Spinal cord in multiple sclerosis: magnetic resonance imaging features and differential diagnosis. Semin Ultrasound CT MR. 2016;37:396–410.

    Article  PubMed  Google Scholar 

  70. Riederer I, Karampinos DC, Settles M, Preibisch C, Bauer JS, Kleine JF, Mühlau M, Zimmer C. Double inversion recovery sequence of the cervical spinal cord in multiple sclerosis and related inflammatory diseases. AJNR Am J Neuroradiol. 2015;36:219–25.

    Article  CAS  PubMed  Google Scholar 

  71. Tartaglino LM, Friedman DP, Flanders AE, Lublin FD, Knobler RL, Liem M. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology. 1995;195:725–32.

    Article  CAS  PubMed  Google Scholar 

  72. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.

    Article  CAS  PubMed  Google Scholar 

  73. Trebst C, Raab P, Voss EV, Rommer P, Abu-Mugheisib M, Zettl UK, Stangel M. Longitudinal extensive transverse myelitis – it’s not all neuromyelitis optica. Nat Rev Neurol. 2011;7:688–98.

    Article  CAS  PubMed  Google Scholar 

  74. Eckstein C, Syc S, Saidha S. Differential diagnosis of longitudinally extensive transverse myelitis in adults. Eur Neurol J. 2011;3:27–39.

    Google Scholar 

  75. Kitley JL, Leite MI, George JS, Palace JA. The differential diagnosis of longitudinally extensive transverse myelitis. Mult Scler. 2012;18:271–85.

    Article  CAS  PubMed  Google Scholar 

  76. Kitley J, Leite MI, Küker W, Quaghebeur G, George J, Waters P, Woodhall M, Vincent A, Palace J. Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol. 2013;70:1375–81.

    Article  PubMed  Google Scholar 

  77. Birnbaum J, Petri M, Thompson R, Izbudak I, Kerr D. Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum. 2009;60:3378–87.

    Article  CAS  PubMed  Google Scholar 

  78. Kim SM, Waters P, Vincent A, Kim SY, Kim HJ, Hong YH, Park KS, Min JH, Sung JJ, Lee KW. Sjögren’s syndrome myelopathy: spinal cord involvement in Sjögren’s syndrome might be a manifestation of neuromyelitis optica. Mult Scler. 2009;15:1062–8.

    Article  CAS  PubMed  Google Scholar 

  79. Al Sawaf A, Berger JR. Longitudinally extensive transverse myelitis suspected for isolated Neuro-Behçet: a diagnostic conundrum. Mult Scler Relat Disord. 2015;4:395–9.

    Article  PubMed  Google Scholar 

  80. Yesilot N, Mutlu M, Gungor O, Baykal B, Serdaroglu P, Akman-Demir G. Clinical characteristics and course of spinal cord involvement in Behcet’s disease. Eur J Neurol. 2007;14:729–37.

    Article  CAS  PubMed  Google Scholar 

  81. Kerr DA, Ayetey H. Immunpathogenesis of acute transverse myelitis. Curr Opin Neurol. 2002;15:339–47.

    Article  PubMed  Google Scholar 

  82. Eckart Sorte D, Poretti A, Newsome SD, Boltshauser E, Huisman TA, Izbudak I. Longitudinally extensive myelopathy in children. Pediatr Radiol. 2015;45:244–57.

    Article  Google Scholar 

  83. Young V, Quaghebeur G. Transverse myelitis and neuromyelitis optica spectrum disorders. Semin Ultrasound CT MR. 2016;37:384–95.

    Article  PubMed  Google Scholar 

  84. Flanagan EP, Kaufmann TJ, Krecke KN, Aksamit AJ, Pittock SJ, Keegan BM, Giannini C, Weinshenker BG. Discriminating long myelitis of Neuromyelitis Optica from sarcoidosis. Ann Neurol. 2016;79:437–47.

    Article  PubMed  Google Scholar 

  85. Marin SE, Callen DJ. The magnetic resonance imaging appearance of monophasic acute disseminated encephalomyelitis: an update post application of the 2007 consensus criteria. Neuroimaging Clin N Am. 2013;23:245–66.

    Article  PubMed  Google Scholar 

  86. Huh SY, Min JH, Kim W, Kim SH, Kim HJ, Kim BJ, Kim BJ, Lee KH. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult Scler. 2014;20:695–704.

    Article  PubMed  Google Scholar 

  87. Tackley G, Küker W, Palace J. Magnetic resonance imaging in neuromyelitis optica. Mult Scler. 2014;20:1153–64.

    Article  PubMed  Google Scholar 

  88. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24:83–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pekcevik Y, Mitchell CH, Mealy MA, Orman G, Lee IH, Scott D. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult Scler. 2016;22:302–11.

    Article  CAS  PubMed  Google Scholar 

  91. Cai W, Tan S, Zhang L, Shan Y, Wang Y, Lin Y. Linear lesions may assist early diagnosis of neuromyelitis optica and longitudinally extensive transverse myelitis, two subtypes of NMOSD. J Neurol Sci. 2016;360:88–93.

    Article  PubMed  Google Scholar 

  92. Flanagan EP, Weinshenker BG, Krecke KN, Lennon VA, Lucchinetti CF, McKeon A, Wingerchuk DM, Shuster EA, Jiao Y, Horta ES, Pittock SJ. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol. 2015;72:81–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Huh SY, Kim SH, Hyun JW, Jeong IH, Park MS, Lee SH, Kim HJ. Short segment myelitis as a first manifestation of neuromyelitis optica spectrum disorders. Mult Scler. 2017;23(3):413–9.

    Article  PubMed  Google Scholar 

  94. Wingerchuk DM, Weinshenker BG. The emerging relationship between neuromyelitis optica and systemic rheumatologic autoimmune disease. Mult Scler. 2012;18:5–10.

    Article  CAS  PubMed  Google Scholar 

  95. Cobo-Calvo Á, Sepúlveda M, Bernard-Valnet R, Ruiz A, Brassat D, Martínez-Yélamos S, Saiz A, Marignier R. Antibodies to myelin oligodendrocyte glycoprotein in aquaporin 4 antibody seronegative longitudinally extensive transverse myelitis: Clinical and prognostic implications. Mult Scler. 2016;22:312–9.

    Article  CAS  PubMed  Google Scholar 

  96. Pröbstel AK, Rudolf G, Dornmair K, Collongues N, Chanson JB, Sanderson NS, Lindberg RL, Kappos L, de Seze J, Derfuss T. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J Neuroinflammation. 2015;12:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kitley J, Woodhall M, Waters P, Leite MI, Devenney E, Craig J, Palace J, Vincent A. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology. 2012;79:1273–7.

    Article  CAS  PubMed  Google Scholar 

  98. van Pelt ED, Wong YYM, Ketelslegers IA, Hamann D, Hintzen RQ. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands. Eur J Neurol. 2016;23:580–7.

    Article  PubMed  Google Scholar 

  99. Kastenbauer S, Winkler F, Fesl G, Schiel X, Ostermann H, Yousry TA, Pfister HW. Acute severe spinal cord dysfunction in bacterial meningitis in adults. MRI findings suggest extensive myelitis. Arch Neurol. 2001;58:806–10.

    Article  CAS  PubMed  Google Scholar 

  100. Okada S, Chang C, Chang G, Yue J. Venous hypertensive myelopathy associated with cervical spondylosis. Spine J. 2016;16:e751–e4.

    Article  PubMed  Google Scholar 

  101. Flanagan EP, Krecke KN, Marsh RW, Giannini C, Keegan BM, Weinshenker BG. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol. 2014;76:54–65.

    Article  CAS  PubMed  Google Scholar 

  102. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gass A, Rocca MA, Agosta F, Ciccarelli O, Chard D, Valsasina P, Brooks JC, Bischof A, Eisele P, Kappos L, Barkhof F, Filippi M; MAGNIMS Study Group. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol. 2015;14:443–54.

    Article  PubMed  Google Scholar 

  104. Thorpe JW, Kidd D, Kendall BE, Tofts PS, Barker GJ, Thompson AJ, MacManus DG, McDonald WI, Miller DH. Spinal cord MRI using multi-array coils and fast spin echo. 1. Technical aspects and findings in healthy adults. Neurology. 1993;43:2625–31.

    Article  CAS  PubMed  Google Scholar 

  105. Oppenheimer DR. The cervical cord in multiple sclerosis. Neuropath Appl Neurob. 1978;4:151–62.

    Article  CAS  Google Scholar 

  106. Wagner M, Klein JC. Meningeal disorders. In: Hattingen E, Weidauer S, Setzer M, Klein J, Vrionis K, editors. Diseases of the spinal cord – novel imaging, diagnosis and treatment. Heidelberg: Springer; 2015. pp. 271–99.

    Google Scholar 

  107. Deshayes S, Bonhomme J, de La Blanchardière A. Neurotoxocariasis: a systematic literature review. Infection. 2016;44:565–74.

    Article  CAS  PubMed  Google Scholar 

  108. Singer OC, Conrad F, Jahnke K, Hattingen E, Auer H, Steinmetz H. Severe meningoencephalitis due to CNS toxocariosis. J Neurol. 2011;258:696–8.

    Article  PubMed  Google Scholar 

  109. Devinsky O, Cho ES, Petito CK, Price RW. Herpes Zoster myelitis. Brain. 1999;114:1181–96.

    Article  Google Scholar 

  110. Hosaka A, Nakamagoe K, Watanabe M, Tamaoka A. Magnetic resonance images of herpes zoster myelitis presenting with Brown-Séquard syndrome. Arch Neurol. 2010;67:506–7.

    Article  PubMed  Google Scholar 

  111. Flanagan EP, McKeon A, Lennon VA, Kearns J, Weinshenker BG, Krecke KN, Matiello M, Keegan BM, Mokri B, Aksamit AJ, Pittock SJ. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology. 2011;76:2089–95.

    Article  CAS  PubMed  Google Scholar 

  112. Flanagan EP, Keegan BM. Paraneoplastic myelopathy. Neurol Clin. 2013;31:307–18.

    Article  PubMed  Google Scholar 

  113. Scaravilli F, Bazille C, Gray F. Neuropathologic contributions to understanding AIDS and the central nervous system. Brain Pathol. 2007;17:197–208.

    Article  PubMed  Google Scholar 

  114. Hatanpaa KJ, Kim JH. Neuropathology of viral infections. In: Tselis AC, Booss J, editors. Neurovirology Handbook of Clinical Neurology, (3rd series), vol 123. Amsterdam: Elsevier; 2014. pp. 193–214.

    Chapter  Google Scholar 

  115. Weidauer S, Nichtweiß M, Hattingen E. Differential diagnosis of white matter lesions: non vascular causes – part II. Clin Neuroradiol. 2014;24:93–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weidauer.

Ethics declarations

Conflict of interest

S. Weidauer, M. Wagner and M. Nichtweiß declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidauer, S., Wagner, M. & Nichtweiß, M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin Neuroradiol 27, 417–433 (2017). https://doi.org/10.1007/s00062-017-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0604-x

Keywords

Navigation