Skip to main content
Log in

Diabetes, heart failure, and myocardial revascularization: Is there a new message from the ISCHEMIA trial?

Diabetes, Herzinsuffizienz und Myokardrevaskularisation: Gibt es Neuigkeiten von der ISCHEMIA-Studie?

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

There is no evidence that the indications for myocardial revascularization differ between patients with and without diabetes. Accepted indications include stable angina that cannot be adequately managed by medication, acute coronary syndromes, severely reduced left ventricular (LV) function due to coronary artery disease, left main stenosis, and advanced coronary artery disease causing substantial inducible ischemia. The recent ISCHEMIA trial challenged the criterion of ischemia. With respect to its primary endpoint, ISCHEMIA showed no benefit of an invasive strategy with systematic myocardial revascularization in patients with stable angina and moderate-to-severe ischemia compared with a conservative strategy. However, myocardial revascularization resulted in a statistically significant and clinically meaningful reduction in angina and an improvement in quality of life. There was a significant reduction in prognostically relevant spontaneous myocardial infarction (MI) in the long term, which came at the cost of an increased rate of peri-interventional MI that was of minor prognostic relevance. The risk profile and number of patients included in the ISCHEMIA trial, as well as the duration of follow-up, are not sufficient to show that the lower incidence of spontaneous infarcts improved survival. In ISCHEMIA, there was no heterogeneity in treatment effect depending on diabetes.

Zusammenfassung

Es gibt keine Hinweise, dass sich die Indikationen für eine Myokardrevaskularisation bei Patienten mit und ohne Diabetes unterscheiden. Zu den anerkannten Indikationen gehören eine stabile Angina, die medikamentös nicht angemessen behandelt werden kann, akute Koronarsyndrome, eine stark eingeschränkte linksventrikuläre Funktion aufgrund einer koronaren Herzkrankheit, eine Stenose des linken Hauptstamms und eine fortgeschrittene koronare Herzkrankheit, die eine erhebliche induzierbare Ischämie verursacht. In der 2020 publizierten ISCHEMIA-Studie wurde das Kriterium der Ischämie infrage gestellt. In Bezug auf ihren primären Endpunkt zeigte ISCHEMIA keinen Vorteil einer invasiven Strategie mit systematischer Myokardrevaskularisation bei Patienten mit stabiler Angina pectoris und mäßiger bis schwerer Ischämie im Vergleich zu einer konservativen Strategie. Die Myokardrevaskularisation führte jedoch zu einer statistisch signifikanten und klinisch bedeutsamen Verringerung der Angina pectoris und zu einer Verbesserung der Lebensqualität. Langfristig kam es zu einer signifikanten Verringerung prognostisch relevanter spontaner Myokardinfarkte (MI), allerdings auf Kosten einer erhöhten Rate periinterventioneller MI, die jedoch von geringerer prognostischer Relevanz waren. Das Risikoprofil und die Anzahl der in ISCHEMIA eingeschlossenen Patienten sowie die Dauer der Nachbeobachtung reichen nicht aus, um zu zeigen, dass die geringere Inzidenz spontaner Infarkte das Überleben verbesserte. In ISCHEMIA gab es keine Heterogenität des Behandlungseffekts in Abhängigkeit vom Diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sarwar N, Gao P, Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222

    Article  CAS  PubMed  Google Scholar 

  2. Hammoud T, Tanguay JF, Bourassa MG (2000) Management of coronary artery disease: therapeutic options in patients with diabetes. J Am Coll Cardiol 36(2):355–365

    Article  CAS  PubMed  Google Scholar 

  3. Resnick HE, Shorr RI, Kuller L et al (2001) Prevalence and clinical implications of American Diabetes Association-defined diabetes and other categories of glucose dysregulation in older adults: the health, aging and body composition study. J Clin Epidemiol 54(9):869–876

    Article  CAS  PubMed  Google Scholar 

  4. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287(19):2570–2581

    Article  CAS  PubMed  Google Scholar 

  5. Ledru F, Ducimetière P, Battaglia S et al (2001) New diagnostic criteria for diabetes and coronary artery disease: insights from an angiographic study. J Am Coll Cardiol 37(6):1543–1550

    Article  CAS  PubMed  Google Scholar 

  6. Norhammar A, Malmberg K, Diderholm E et al (2004) Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol 43(4):585–591

    Article  PubMed  Google Scholar 

  7. Mente A, Yusuf S, Islam S et al (2010) Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J Am Coll Cardiol 55(21):2390–2398

    Article  PubMed  Google Scholar 

  8. Marso SP, Mercado N, Maehara A et al (2012) Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes. JACC Cardiovasc Imaging 5(3 Suppl):S42–S52

    Article  PubMed  Google Scholar 

  9. Silva JA, Escobar A, Collins TJ et al (1995) Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 92(7):1731–1736

    Article  CAS  PubMed  Google Scholar 

  10. Ishii H, Umeda F, Nawata H (1992) Platelet function in diabetes mellitus. Diabetes Metab Rev 8:53–66

    Article  CAS  PubMed  Google Scholar 

  11. Ceriello A (1993) Coagulation activation in diabetes mellitus: a role of hyperglycemia and therapeutic prospects. Diabetologia 36:1119–1125

    Article  CAS  PubMed  Google Scholar 

  12. Haffner SM, Lehto S, Rönnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234

    Article  CAS  PubMed  Google Scholar 

  13. Barzilay JI, Kronmal RA, Bittner V et al (1994) Coronary artery disease and coronary artery bypass grafting in diabetic patients aged 〉 or = 65 years (report from the Coronary Artery Surgery Study [CASS]Registry). Am J Cardiol 74:334–339

    Article  CAS  PubMed  Google Scholar 

  14. Scheen AJ, Warzee F, Legrand VM (2004) Drug-eluting stents: meta-analysis in diabetic patients. Eur Heart J 25(23):2167–2168 (author reply 2168–9)

    Article  PubMed  Google Scholar 

  15. Bangalore S, Kumar S, Fusaro M et al (2012) Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: mixed treatment comparison analysis of 22,844 patient years of follow-up from randomised trials. BMJ 345:e5170

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Belle E, Ketelers R, Bauters C et al (2001) Patency of percutaneous transluminal coronary angioplasty sites at 6‑month angiographic follow-up: a key determinant of survival in diabetics after coronary balloon angioplasty. Circulation 103(9):1218–1224

    Article  PubMed  Google Scholar 

  17. Neumann FJ, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 40(2):87–165

    Article  PubMed  Google Scholar 

  18. Collet JP, Thiele H, Barbato E et al (2021) 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 42(14):1289–1367

    Article  PubMed  Google Scholar 

  19. Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477

    Article  PubMed  Google Scholar 

  20. Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361:13–20

    Article  PubMed  Google Scholar 

  21. Velazquez EJ, Lee KL, Jones RH et al (2016) Coronary-artery bypass surgery in patients with Ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bangalore S, Guo Y, Samadashvili Z et al (2016) Revascularization in patients with multivessel coronary artery disease and severe left ventricular systolic dysfunction: everolimus-eluting stents versus coronary artery bypass graft surgery. Circulation 133(22):2132–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hachamovitch R, Rozanski A, Shaw LJ et al (2011) Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 32(8):1012–1024

    Article  PubMed  Google Scholar 

  24. Shaw LJ, Berman DS, Maron DJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117(10):1283–1291

    Article  PubMed  Google Scholar 

  25. Yusuf S, Zucker D, Peduzzi P et al (1994) Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 344(8922):563–570

    Article  CAS  PubMed  Google Scholar 

  26. Lüscher TF, Creager MA, Beckman JA, Cosentino F (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II. Circulation 108(13):1655–1661

    Article  PubMed  Google Scholar 

  27. Bangalore S, Pencina MJ, Kleiman NS, Cohen DJ (2013) Prognostic implications of procedural vs spontaneous myocardial infarction: results from the Evaluation of Drug Eluting Stents and Ischemic Events (EVENT) registry. Am Heart J 166(6):1027–1034

    Article  PubMed  Google Scholar 

  28. Damman P, Wallentin L, Fox KA et al (2012) Long-term cardiovascular mortality after procedure-related or spontaneous myocardial infarction in patients with non-ST-segment elevation acute coronary syndrome: a collaborative analysis of individual patient data from the FRISC II, ICTUS, and RITA‑3 trials (FIR). Circulation 125(4):568–576

    Article  PubMed  Google Scholar 

  29. Fox KA, Clayton TC, Damman P et al (2010) Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J Am Coll Cardiol 55(22):2435–2445

    Article  PubMed  Google Scholar 

  30. O’Donoghue ML, Vaidya A, Afsal R et al (2012) An invasive or conservative strategy in patients with diabetes mellitus and non-ST-segment elevation acute coronary syndromes: a collaborative meta-analysis of randomized trials. J Am Coll Cardiol 60(2):106–111

    Article  PubMed  Google Scholar 

  31. Zimmermann FM, Omerovic E, Fournier S et al (2019) Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J 40(2):180–186

    Article  PubMed  Google Scholar 

  32. Johnson NP, Tóth GG, Lai D et al (2014) Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 64(16):1641–1654

    Article  PubMed  Google Scholar 

  33. Fearon WF, Nishi T, De Bruyne B et al (2018) Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-up of the FAME 2 trial (fractional flow reserve versus Angiography for Multivessel evaluation). Circulation 137(5):480–487

    Article  PubMed  Google Scholar 

  34. Baron SJ, Chinnakondepalli K, Magnuson EA et al (2017) Quality-of-life after everolimus-eluting stents or bypass surgery for left-main disease: results from the EXCEL trial. J Am Coll Cardiol 70(25):3113–3122

    Article  PubMed  Google Scholar 

  35. Abdallah MS, Wang K, Magnuson EA et al (2017) Quality of life after surgery or DES in patients with 3‑vessel or left main disease. J Am Coll Cardiol 69(16):2039–2050

    Article  PubMed  Google Scholar 

  36. Abdallah MS, Wang K, Magnuson EA et al (2013) Quality of life after PCI vs CABG among patients with diabetes and multivessel coronary artery disease: a randomized clinical trial. JAMA 310(15):1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maron DJ, Hochman JS, Reynolds HR et al (2020) Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 382(15):1395–1407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bangalore S, Maron DJ, O’Brien SM et al (2020) Management of coronary disease in patients with advanced kidney disease. N Engl J Med 382(17):1608–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaitman BR, Alexander KP, Cyr DD et al (2021) Myocardial infarction in the ISCHEMIA trial: impact of different definitions on incidence, prognosis, and treatment comparisons. Circulation 143(8):790–804

    Article  PubMed  Google Scholar 

  40. Spertus JA, Jones PG, Maron DJ et al (2020) Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med 382(15):1408–1419

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reynolds HR, Shaw LJ, Min JK et al (2021) Outcomes in the ISCHEMIA trial based on coronary artery disease and Ischemia severity. Circulation 144(13):1024–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopes RD, Alexander KP, Stevens SR et al (2020) Initial invasive versus conservative management of stable Ischemic heart disease in patients with a history of heart failure or left ventricular dysfunction: insights from the ISCHEMIA trial. Circulation 142(18):1725–1735

    Article  PubMed  PubMed Central  Google Scholar 

  43. Newman JD, Anthopolos R, Mancini GBJ et al (2021) Outcomes of participants with diabetes in the ISCHEMIA trials. Circulation 144(17):1380–1395

    Article  CAS  PubMed  Google Scholar 

  44. Farkouh ME, Domanski M, Sleeper LA et al (2012) Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 367(25):2375–2384

    Article  CAS  PubMed  Google Scholar 

  45. Head SJ, Milojevic M, Daemen J et al (2018) Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet 391(10124):939–948

    Article  PubMed  Google Scholar 

  46. BARI I. Influence of diabetes on 5‑year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI). Circulation 1997;96:1761–9.

  47. Kappetein AP, Head SJ, Morice MC et al (2013) Treatment of complex coronary artery disease in patients with diabetes: 5‑year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg 43(5):1006–1013

    Article  PubMed  Google Scholar 

  48. Kapur A, Hall RJ, Malik IS et al (2010) Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1‑year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol 55(5):432–440

    Article  PubMed  Google Scholar 

  49. Milojevic M, Serruys PW, Sabik JF 3rd et al (2019) Bypass surgery or stenting for left main coronary artery disease in patients with diabetes. J Am Coll Cardiol 73(13):1616–1628

    Article  PubMed  Google Scholar 

  50. Stone GW, Kappetein AP, Sabik JF et al (2019) Five-year outcomes after PCI or CABG for left main coronary disease. N Engl J Med 381(19):1820–1830

    Article  PubMed  Google Scholar 

  51. Lawton JS, Tamis-Holland JE, Bangalore S et al (2022) 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 145(3):e4–e17

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Neumann.

Ethics declarations

Conflict of interest

F.-J. Neumann reports speaker fees from Amgen, Boston Scientific, and Daiichi Sankyo and consulting fees from Novartis as well as speaker fees to his institution from Bayer Healthcare, Biotronic, Boehringer Ingelheim, Edwards Lifesciences, Ferrer, and Pfizer; consulting fees to his institution from Boehringer Ingelheim; financial study support from Bayer Healthcare, Boston Scientific, Biotronic, Edwards Lifesciences, GlaxoSmithKline, Medtronic, and Pfizer.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, FJ. Diabetes, heart failure, and myocardial revascularization: Is there a new message from the ISCHEMIA trial?. Herz 47, 442–448 (2022). https://doi.org/10.1007/s00059-022-05132-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05132-8

Keywords

Schlüsselwörter

Navigation