Skip to main content
Log in

Current evidence of survival benefit between chest-compression only versus standard cardiopulmonary resuscitation in out-of-hospital cardiac arrest

Updated systematic review and meta-analysis of randomized controlled trials with trial sequential analysis

Aktuelle Evidenz für einen Überlebensvorteil zwischen reiner Brustkompression und kardiopulmonaler Standardreanimation bei außerklinischem Herzstillstand

Aktualisierte systematische Übersicht und Metaanalyse randomisierter kontrollierter Studien mit TSA (Trial Sequential Analysis)

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Evidence to support a better cardiopulmonary resuscitation method between standard vs. continuous chest compression (STD-CPR vs. CCC-CPR) is lacking.

Materials and methods

Our systematic review followed PRISMA guidelines. We searched PubMed, ScienceDirect, EBSCOhost, and ProQuest database from 1985 to 26 September 2019 restricted to randomized controlled trial, human study, and English articles. Quality assessment of between-study heterogeneity and a trial sequential analysis (TSA) were conducted. We estimated overall significance with 80% power and adjusted Z values thresholds using O’Brien–Fleming α‑spending function. Required information size with 21% relative risk using the estimation between-group incidences provided from the median rate across trials was determined. Inconclusive TSA result will lead to size estimation of future RCT. Quality of evidence was analyzed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) Handbook and TSA.

Results

Based on three trials in OHCA with dispatcher-guided and bystander-initiated CPR, our meta-analysis favors CCC-CPR for survival to hospital discharge, compared to STD-CPR (RR [Risk Ratio] = 1.21[1.01–1.46], 95% CI, p = 0.68, I2 = 0). However, current meta-analyses with 3031 patients appeared to be inconclusive. There is a significant risk of type 1 error and therefore, results are potentially false positive. It is estimated that a minimal of 4331 patients needed to deem a conclusive result and a total of 5894 patients with similar risk profile required to stabilize statistic results in future trials. Quality of evidence is downgraded to moderate due to serious imprecision based on TSA.

Conclusion

Based on these analyses, evidence is inadequate to conclude the superiority of one CPR method over the other. Further trials with larger numbers of patients are needed to deem a conclusive and stable meta-analysis.

Zusammenfassung

Hintergrund

Nach wie vor fehlt die Evidenz für eine überlegene Reanimationsmethode: kardiopulmonoale Standardreanimation (STD-CPR) vs. kontinuierliche Thoraxkompression (CCC-CPR).

Materialien und Methoden

Unsere systematische Überprüfung folgte den PRISMA-Richtlinien. Wir durchsuchten die Datenbanken PubMed, ScienceDirect, EBSCOhost und ProQuest von 1985 bis zum 26. September 2019, beschränkt auf randomisierte kontrollierte Studien, Humanstudien und englischsprachige Veröffentlichungen. Es wurden eine Qualitätsbewertung der studienübergreifenden Heterogenität und eine TSA (Trial Sequential Analysis) durchgeführt. Wir schätzten die Gesamtsignifikanz auf eine 80%ige Power und passten die Z‑Schwellenwerte mithilfe der O’Brien-Fleming-α-Ausgabefunktion an. Der erforderliche Informationsumfang mit einem relativen Risiko von 21% wurde anhand der Schätzung der Inzidenz zwischen den Gruppen anhand der Medianrate über die Studien hinweg ermittelt. Ein nicht eindeutiges TSA-Ergebnis führt zu einer Größenschätzung der zukünftigen RCT. Die Qualität der Evidenz wurde anhand des GRADE(Grading of Recommendations Assessment, Development and Evaluation)-Handbuchs und der TSA analysiert.

Ergebnisse

Auf der Grundlage von 3 OHCA-Studien mit Dispatcher-geführter und Bystander-initiierter CPR favorisiert unsere Metaanalyse die CCC-CPR für das Überleben bis zur Aufnahme ins Krankenhaus im Vergleich zur STD-CPR (RR = 1,21[1,01‑1,46], 95%-KI, p = 0,68, I2 = 0). Die aktuellen Metaanalysen mit 3031 Patienten schienen jedoch nicht aussagekräftig zu sein. Es besteht ein erhebliches Risiko für einen Typ-1-Fehler und damit für potenziell falsch-positive Ergebnisse. Es wird geschätzt, dass mindestens 4331 Patienten benötigt werden, um ein abschließendes Ergebnis zu erhalten, und insgesamt 5894 Patienten mit ähnlichem Risikoprofil, um die statistischen Befunde in zukünftigen Studien zu bestätigen. Die Qualität der Evidenz wird aufgrund der erheblichen Ungenauigkeit auf der Basis der TSA auf mäßig herabgestuft.

Schlussfolgerung

Auf der Grundlage der vorgestellten Analysen reicht die Evidenz nicht aus, um die Überlegenheit einer CPR-Methode gegenüber der anderen nachzuweisen. Für eine aussagekräftige und zuverlässige Metaanalyse sind weitere Studien mit mehr Patienten erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gu W, Li C (2017) Ventilation strategies during out-of-hospital cardiac arrest: a problem that should not be neglected. J Emerg Crit Care Med 1:23–23. https://doi.org/10.21037/jeccm.2017.08.08

    Article  Google Scholar 

  2. Mawani M et al. (2016) Epidemiology and outcomes of out-of-hospital cardiac arrest in a developing country—a multicenter cohort study. BMC Emerg Med. https://doi.org/10.1186/s12873-016-0093-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nichol G et al. (2015) Trial of continuous or interrupted chest compressions during CPR. N Engl J Med 373:2203–2214. https://doi.org/10.1056/NEJMoa1509139

    Article  CAS  PubMed  Google Scholar 

  4. Garg R et al. (2017) Compression-only life support (COLS) for cardiopulmonary resuscitation by layperson outside the hospital. Indian J Anaesth 61:867. https://doi.org/10.4103/ija.IJA_636_17

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhan L et al. (2017) Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010134.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nofzinger JR et al. (2019) Effectiveness of hands-only cardiopulmonary resuscitation teaching on lay bystander attitudes toward future resuscitation. Spartan Med Res J 4:1–6

    Google Scholar 

  7. Perman SM et al. (2019) Public perceptions on why women receive less bystander cardiopulmonary resuscitation than men in out-of-hospital cardiac arrest. Circulation 139:1060–1068. https://doi.org/10.1161/CIRCULATIONAHA.118.037692

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gianotto-Oliveira R et al. (2015) Quality of continuous chest compressions performed for one or two minutes. Clinics 70:190–195. https://doi.org/10.6061/clinics/2015(03)07

    Article  Google Scholar 

  9. Lee SD, Hong JY, Oh JH (2018) Why should we switch chest compression providers every 2 minutes during cardiopulmonary resuscitation? Signa Vitae J Intensive Care Emerg Med 14:31–34. https://doi.org/10.22514/SV142.102018.4

    Article  Google Scholar 

  10. Shin J et al. (2014) Comparison of CPR quality and rescuer fatigue between standard 30:2 CPR and chest compression-only CPR: a randomized crossover manikin trial. Scand J Trauma Resusc Emerg Med 22:24. https://doi.org/10.1186/s13049-014-0059-x

    Article  Google Scholar 

  11. Yang CL et al. (2012) Cardiocerebral resuscitation vs cardiopulmonary resuscitation for cardiac arrest: a systematic review. Am J Emerg Med 30:784–793. https://doi.org/10.1016/j.ajem.2011.02.035

    Article  PubMed  Google Scholar 

  12. Cabrini L et al. (2010) Bystander-initiated chest compressiononly CPR is better than standard CPR in out-of-hospital cardiac arrest. HSR Proc Intensive Care Cardiovasc Anesth 2:279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hüpfl M, Selig H, Nagele P (2010) Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet 376:1552–1557. https://doi.org/10.1016/S0140-6736(10)61454-7

    Article  Google Scholar 

  14. Monsieurs KG et al. (2015) European resuscitation council guidelines for resuscitation 2015. Section 1. Executive summary. Resuscitation 95:1–80. https://doi.org/10.1016/j.resuscitation.2015.07.038

    Article  PubMed  Google Scholar 

  15. Koster TM et al. (2019) Apparently conclusive meta-analysis on interventions in critical care may be inconclusive—a meta-epidemiological study. J Clin Epidemiol 114:1–10. https://doi.org/10.1016/j.jclinepi.2019.05.011

    Article  PubMed  Google Scholar 

  16. Castellini G et al. (2018) Assessing imprecision in cochrane systematic reviews: a comparison of GRADE and trial sequential analysis. Syst Rev. https://doi.org/10.1186/s13643-018-0770-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moher D et al. (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Higgins JPT et al. (2016) A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD201601

    Article  Google Scholar 

  19. Higgins JP, Green S (2008) Cochrane handbook for systematic reviews of interventions. Wiley, Chichester

    Book  Google Scholar 

  20. Thorlund K, Engstrøm J, Wettersley J, Brok J, Imberger G, Gluud C (2011) User manual for Trial Sequential Analysis (TSA). Copenhagen, Denmark: Copenhagen Trial Unit, Centre for Clinical Intervention Research. http://www.ctu.dk/tsa/files/tsa_manual.pdf

    Google Scholar 

  21. Zhang Y et al. (2019) GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences—inconsistency, imprecision, and other domains. J Clin Epidemiol 111:83–93. https://doi.org/10.1016/j.jclinepi.2018.05.011

    Article  PubMed  Google Scholar 

  22. Zhang Y et al. (2019) GRADE Guidelines: 19. assessing the certainty of evidence in the importance of outcomes or values and preferences—Risk of bias and indirectness. J Clin Epidemiol 111:94–104. https://doi.org/10.1016/j.jclinepi.2018.01.013

    Article  PubMed  Google Scholar 

  23. Balshem H et al. (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406. https://doi.org/10.1016/j.jclinepi.2010.07.015

    Article  Google Scholar 

  24. GRADEpro GDT (2019) GRADEpro guideline development tool [software] (2015) mcmaster university. https://gradepro.org. Accessed 27 Sept 2019

  25. Gold LS, Eisenberg M (2008) Chest-compression-only vs. standard cardiopulmonary resuscitation: shouldn’t we wait for more evidence? Prehosp Emerg Care 12:406–409. https://doi.org/10.1080/10903120802096696

    Article  PubMed  Google Scholar 

  26. Hui C, Brindley P (2011) Continuous chest compression cardiopulmonary resuscitation following out-of-hospital cardiac arrest. Can J Anaesth 58:330–333. https://doi.org/10.1007/s12630-010-9426-x

    Article  PubMed  Google Scholar 

  27. Dumas F et al. (2013) Chest compression alone cardiopulmonary resuscitation is associated with better long-term survival compared with standard cardiopulmonary resuscitation. Circulation 127:435–441. https://doi.org/10.1161/CIRCULATIONAHA.112.124115

    Article  PubMed  Google Scholar 

  28. Kitamura T et al. (2010) Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. Lancet 375:1347–1354. https://doi.org/10.1016/S0140-6736(10)60064-5

    Article  Google Scholar 

  29. Panchal AR et al. (2013) Chest compression-only cardiopulmonary resuscitation performed by lay rescuers for adult out-of-hospital cardiac arrest due to non-cardiac aetiologies. Resuscitation 84:435–439. https://doi.org/10.1016/j.resuscitation.2012.07.038

    Article  PubMed  Google Scholar 

  30. Japanese Circulation Society Resuscitation Science Study Group (2013) Chest-compression-only bystander cardiopulmonary resuscitation in the 30:2 compression-to-ventilation ratio era. Circ J 77:2742–2750. https://doi.org/10.1253/circj.cj-13-0457

    Article  Google Scholar 

  31. Brown SP et al. (2015) A randomized trial of continuous versus interrupted chest compressions in out-of-hospital cardiac arrest: rationale for and design of the resuscitation outcomes consortium continuous chest compressions trial. Am Heart J 169:334–341. https://doi.org/10.1016/j.ahj.2014.11.011

    Article  PubMed  Google Scholar 

  32. Cunningham LM et al. (2012) Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. Am J Emerg Med 30:1630–1638. https://doi.org/10.1016/j.ajem.2012.02.015

    Article  PubMed  Google Scholar 

  33. Drager KK (2012) Improving patient outcomes with compression-only CPR: will bystander CPR rates improve? J Emerg Nurs 38:234–238. https://doi.org/10.1016/j.jen.2011.02.008

    Article  PubMed  Google Scholar 

  34. Meier P et al. (2010) Chest compressions before defibrillation for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled clinical trials. BMC Med 8:52. https://doi.org/10.1186/1741-7015-8-52

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yao L et al. (2014) Compression-only cardiopulmonary resuscitation vs standard cardiopulmonary resuscitation: an updated meta-analysis of observational studies. Am J Emerg Med 32:517–523. https://doi.org/10.1016/j.ajem.2014.01.055

    Article  PubMed  Google Scholar 

  36. Rea TD et al. (2010) CPR with chest compression alone or with rescue breathing. N Engl J Med 363:423–433. https://doi.org/10.1056/NEJMoa0908993

    Article  CAS  PubMed  Google Scholar 

  37. Hallstrom A et al. (2000) Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 342:1546–1553. https://doi.org/10.1056/NEJM200005253422101

    Article  CAS  PubMed  Google Scholar 

  38. Svensson L et al. (2010) Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N Engl J Med 363:434–442. https://doi.org/10.1056/NEJMoa0908991

    Article  CAS  PubMed  Google Scholar 

  39. Kleinman ME et al. (2018) ILCOR scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care: a consensus statement. Circulation 137:e802–e819. https://doi.org/10.1161/CIR.0000000000000561

    Article  PubMed  Google Scholar 

  40. Thorlund K, Anema A, Mills E (2010) Interpreting meta-analysis according to the adequacy of sample size. An example using isoniazid chemoprophylaxis for tuberculosis in purified protein derivative negative HIV-infected individuals. Clin Epidemiol 2:57–66. https://doi.org/10.2147/clep.s9242

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ridjab.

Ethics declarations

Conflict of interest

I. Ivan, F. Budiman, R. Ruby, I. P. Wendi and D. A. Ridjab declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivan, I., Budiman, F., Ruby, R. et al. Current evidence of survival benefit between chest-compression only versus standard cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Herz 46 (Suppl 2), 198–208 (2021). https://doi.org/10.1007/s00059-020-04982-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04982-4

Keywords

Schlüsselwörter

Navigation