Skip to main content
Log in

The bidirectional relationship between chronic obstructive pulmonary disease and coronary artery disease

Die bidirektionale Beziehung zwischen chronisch obstruktiver Lungenerkrankung und koronarer Herzkrankheit

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD) not only have smoking as a common risk factor, they also share epidemiological relationships and important mutual effects. There is good evidence to suggest that COPD is highly prevalent but underdiagnosed among CAD patients and vice versa. The symptoms of the two diseases can overlap, making differential diagnosis challenging. This highlights the importance of pulmonary function tests (PFTs) in patients with CAD but also a cardiological assessment in patients with COPD. Chronic obstructive pulmonary disease is a risk factor for the development of CAD independent of other cardiovascular risk factors, and the presence of COPD worsens prognosis in patients with CAD. Mechanisms underlying the associations between COPD and CAD have been less well studied, but inflammation is increasingly being recognized as an important factor linking the two diseases. Other potential contributors include increased oxidative stress, platelet activation, and arterial stiffness. The influence of medications used to treat one condition on the other one needs to be understood and taken into account in patient management. Physicians need to be aware of the important links between COPD and CAD, both of which are commonly encountered in clinical practice. This should help to optimize the management of both conditions to improve patient outcomes.

Zusammenfassung

Die chronisch obstruktive Lungenerkrankung (COPD) und die koronare Herzkrankheit (KHK) haben nicht nur das Rauchen als gemeinsamen Risikofaktor, sondern auch epidemiologische Beziehungen und wichtige gegenseitige Auswirkungen. Es gibt gute Anhaltspunkte dafür, dass die COPD bei KHK-Patienten stark verbreitet ist, aber unterdiagnostiziert wird – und umgekehrt. Die Symptome von beiden Krankheiten können sich überschneiden, was die Differenzialdiagnose schwierig macht. Dies unterstreicht die Bedeutung eines Lungenfunktionstests (PFT) bei Patienten mit KHK und einer kardiologischen Untersuchung bei Patienten mit COPD. Eine COPD ist ein Risikofaktor für die Entwicklung einer KHK, unabhängig von anderen kardiovaskulären Risikofaktoren, und das Bestehen einer COPD verschlechtert die Prognose bei Patienten mit KHK. Mechanismen, die den Zusammenhängen zwischen COPD und KHK zugrunde liegen, sind weniger gut untersucht, aber Inflammation gilt zunehmend als ein wichtiger Faktor, der beide Erkrankungen verbindet. Andere mögliche Faktoren sind erhöhter oxidativer Stress, Thrombozytenaktivierung und arterielle Gefäßsteifigkeit. Der Einfluss von Medikamenten zur Behandlung der einen Erkrankung auf die andere muss verstanden und berücksichtigt werden. Ärzte müssen sich der wichtigen Zusammenhänge zwischen COPD und KHK bewusst sein, da beide in der klinischen Praxis häufig vorkommen. Dies sollte helfen, die Behandlung beider Erkrankungen zu optimieren und hierdurch das Outcome zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sin DD, Anthonisen NR, Soriano JB, Agusti AG (2006) Mortality in COPD: role of comorbidities. Eur Respir J 28:1245–1257. https://doi.org/10.1183/09031936.00133805

    Article  CAS  PubMed  Google Scholar 

  2. Tully PJ, Cosh SM, Baumeister H (2014) The anxious heart in whose mind? A systematic review and meta-regression of factors associated with anxiety disorder diagnosis, treatment and morbidity risk in coronary heart disease. J Psychosom Res 77:439–448. https://doi.org/10.1016/j.jpsychores.2014.10.001

    Article  PubMed  Google Scholar 

  3. Jones PW, Brusselle G, Dal Negro RW et al (2011) Health-related quality of life in patients by COPD severity within primary care in Europe. Respir Med 105:57–66. https://doi.org/10.1016/j.rmed.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 21 Oct 2019

  5. Januszek R, Siudak Z, Dziewierz A et al (2018) Chronic obstructive pulmonary disease affects the angiographic presentation and outcomes of patients with coronary artery disease treated with percutaneous coronary interventions. Pol Arch Intern Med 128:24–34. https://doi.org/10.20452/pamw.4145

    Article  PubMed  Google Scholar 

  6. Franssen FME, Soriano JB, Roche N et al (2016) Lung function abnormalities in smokers with ischemic heart disease. Am J Respir Crit Care Med 194:568–576. https://doi.org/10.1164/rccm.201512-2480OC

    Article  CAS  PubMed  Google Scholar 

  7. Almagro P, Lapuente A, Pareja J, Yun S, Garcia ME, Padilla F, Heredia JL, De la Sierra A, Soriano JB (2015) Underdiagnosis and prognosis of chronic obstructive pulmonary disease after percutaneous coronary intervention: a prospective study. Int J Chron Obstruct Pulmon Dis 10:1353–1361. https://doi.org/10.2147/COPD.S84482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hadi HA, Zubaid M, Al Mahmeed W et al (2010) Prevalence and prognosis of chronic obstructive pulmonary disease among 8167 Middle Eastern patients with acute coronary syndrome. Clin Cardiol 33:228–235. https://doi.org/10.1002/clc.20751

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mooe T, Stenfors N (2015) The prevalence of COPD in individuals with acute coronary syndrome: a spirometry-based screening study. COPD 12:453–461. https://doi.org/10.3109/15412555.2014.974742

    Article  PubMed  Google Scholar 

  10. Dreher M, Daher A, Keszei A et al (2018) Whole-body plethysmography and blood gas analysis in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Respiration 97:24–33. https://doi.org/10.1159/000491096

    Article  CAS  PubMed  Google Scholar 

  11. Reed RM, Eberlein M, Girgis RE et al (2012) Coronary artery disease is under-diagnosed and under-treated in advanced lung disease. Am J Med 125(1228):e13–1228. https://doi.org/10.1016/j.amjmed.2012.05.018

    Article  Google Scholar 

  12. Sin DD, Man SFP (2005) Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc 2:8–11. https://doi.org/10.1513/pats.200404-032MS

    Article  PubMed  Google Scholar 

  13. Hansell AL, Walk JA, Soriano JB (2003) What do chronic obstructive pulmonary disease patients die from? A multiple cause coding analysis. Eur Respir J 22:809–814. https://doi.org/10.1183/09031936.03.00031403

    Article  CAS  PubMed  Google Scholar 

  14. Brekke PH, Omland T, Holmedal SH et al (2008) Troponin T elevation and long-term mortality after chronic obstructive pulmonary disease exacerbation. Eur Respir J 31:563–570. https://doi.org/10.1183/09031936.00015807

    Article  CAS  PubMed  Google Scholar 

  15. Chang CL, Robinson SC, Mills GD et al (2011) Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 66:764–768. https://doi.org/10.1136/thx.2010.155333

    Article  PubMed  Google Scholar 

  16. McAllister DA, Maclay JD, Mills NL et al (2012) Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J 39:1097–1103. https://doi.org/10.1183/09031936.00124811

    Article  CAS  PubMed  Google Scholar 

  17. Wild J, Arrigo M, Isenring BD et al (2015) Coronary artery disease in lung transplant candidates: role of routine invasive assessment. Respiration 89:107–111. https://doi.org/10.1159/000368368

    Article  PubMed  Google Scholar 

  18. Falk J, Kadiev S, Criner G et al (2008) Cardiac disease in chronic obstructive pulmonary disease. Proc Am Thorac Soc 5:543–548. https://doi.org/10.1513/pats.200708-142ET

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117. https://doi.org/10.2214/AJR.05.1697

    Article  PubMed  Google Scholar 

  20. Mapel DW, Dedrick D, Davis K (2005) Trends and cardiovascular co-morbidities of COPD patients in the veterans administration medical system, 1991–1999. COPD 2:35–41

    Article  Google Scholar 

  21. Curkendall SM, DeLuise C, Jones JK et al (2006) Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol 16:63–70. https://doi.org/10.1016/j.annepidem.2005.04.008

    Article  PubMed  Google Scholar 

  22. Bhatt SP, Dransfield MT (2013) Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res 162:237–251. https://doi.org/10.1016/j.trsl.2013.05.001

    Article  PubMed  Google Scholar 

  23. Lee HM, Liu MA, Barrett-Connor E, Wong ND (2014) Association of lung function with coronary heart disease and cardiovascular disease outcomes in elderly: the Rancho Bernardo study. Respir Med 108:1779–1785. https://doi.org/10.1016/j.rmed.2014.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schroeder EB, Welch VL, Couper D et al (2003) Lung function and incident coronary heart disease: the atherosclerosis risk in communities study. Am J Epidemiol 158:1171–1181. https://doi.org/10.1093/aje/kwg276

    Article  PubMed  Google Scholar 

  25. Hole DJ, Watt GCM, Davey-Smith G et al (1996) Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. Br Med J 313:711–715. https://doi.org/10.1136/bmj.313.7059.711

    Article  CAS  Google Scholar 

  26. Zureik M, Benetos A, Neukirch C et al (2002) Reduced pulmonary function is associated with central arterial stiffness in men. Am J Respir Crit Care Med 164:2181–2185. https://doi.org/10.1164/ajrccm.164.12.2107137

    Article  Google Scholar 

  27. Schünemann HJ, Dorn J, Grant BJB et al (2000) Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo health study. Chest 118:656–664. https://doi.org/10.1378/chest.118.3.656

    Article  PubMed  Google Scholar 

  28. Knuiman MW, James AL, Divitini ML et al (1999) Lung function, respiratory symptoms, and mortality: results from the Busselton health study. Ann Epidemiol 9:297–306. https://doi.org/10.1016/S1047-2797(98)00066-0

    Article  CAS  PubMed  Google Scholar 

  29. Engström G, Lind P, Hedblad B et al (2002) Lung function and cardiovascular risk relationship with inflammation-sensitive plasma proteins. Circulation 106:2555–2560. https://doi.org/10.1161/01.CIR.0000037220.00065.0D

    Article  PubMed  Google Scholar 

  30. Sin DD, Man SF (2003) Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation 107:1514–1519. https://doi.org/10.1161/01.CIR.0000056767.69054.B3

    Article  PubMed  Google Scholar 

  31. Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138:16–27. https://doi.org/10.1016/j.jaci.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  32. Ross R, Dodet B (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420. https://doi.org/10.1016/s0002-8703(99)70266-8

    Article  CAS  PubMed  Google Scholar 

  33. Engström G, Lind P, Hedblad B et al (2002) Effects of cholesterol and inflammation-sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 105:2632–2637. https://doi.org/10.1161/01.CIR.0000017327.69909.FF

    Article  CAS  PubMed  Google Scholar 

  34. Danesh J, Whincup P, Walker M et al (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. Br Med J 321:199–204. https://doi.org/10.1136/bmj.321.7255.199

    Article  CAS  Google Scholar 

  35. Ridker PM (2003) Clinical application of C‑reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369. https://doi.org/10.1161/01.CIR.0000053730.47739.3C

    Article  PubMed  Google Scholar 

  36. Rabe KF, Hurst JR, Suissa S (2018) Cardiovascular disease and COPD: dangerous liaisons? Eur Respir Rev 27:180057. https://doi.org/10.1183/16000617.0057-2018

    Article  PubMed  Google Scholar 

  37. Liu Y, Liu X, Lin G et al (2014) Decreased CD34+ cell number is correlated with cardiac dysfunction in patients with acute exacerbation of COPD. Heart Lung Circ 23:875–882. https://doi.org/10.1016/j.hlc.2014.03.008

    Article  PubMed  Google Scholar 

  38. Maclay JD, McAllister DA, Johnston S et al (2011) Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax 66:769–774. https://doi.org/10.1136/thx.2010.157529

    Article  PubMed  Google Scholar 

  39. Mills NL, Miller JJ, Anand A et al (2008) Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax 63:306–311. https://doi.org/10.1136/thx.2007.083493

    Article  CAS  PubMed  Google Scholar 

  40. Verma S, Yeh ETH (2003) C‑reactive protein and atherothrombosis—beyond a biomarker: an actual partaker of lesion formation. Am J Physiol Regul Integr Comp Physiol 285:R1253–R1256. https://doi.org/10.1152/ajpregu.00170.2003

    Article  CAS  PubMed  Google Scholar 

  41. Zinellu E, Zinellu A, Fois AG et al (2016) Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 17:150. https://doi.org/10.1186/s12931-016-0471-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Violi F, Loffredo L, Carnevale R et al (2017) Atherothrombosis and oxidative stress: mechanisms and management in elderly. Antioxid Redox Signal 27:1083–1124. https://doi.org/10.1089/ars.2016.6963

    Article  CAS  PubMed  Google Scholar 

  43. Engström G, Janzon L (2002) Risk of developing diabetes is inversely related to lung function: a population-based cohort study. Diabet Med 19:167–170. https://doi.org/10.1046/j.1464-5491.2002.00652.x

    Article  PubMed  Google Scholar 

  44. Engström G, Wollmer P, Valind S et al (2001) Blood pressure increase between 55 and 68 years of age is inversely related to lung function: longitudinal results from the cohort study “men born in 1914.”. J Hypertens 19:1203–1208. https://doi.org/10.1097/00004872-200107000-00004

    Article  PubMed  Google Scholar 

  45. Jatene T, Biering-Sørensen T, Nochioka K et al (2017) Frequency of cardiac death and stent thrombosis in patients with chronic obstructive pulmonary disease undergoing percutaneous coronary intervention (from the BASKET-PROVE I and II trials). Am J Cardiol 119:14–19. https://doi.org/10.1016/j.amjcard.2016.09.013

    Article  PubMed  Google Scholar 

  46. Berger JS, Sanborn TA, Sherman W, Brown DL (2004) Effect of chronic obstructive pulmonary disease on survival of patients with coronary heart disease having percutaneous coronary intervention. Am J Cardiol 94:649–651. https://doi.org/10.1016/j.amjcard.2004.05.034

    Article  PubMed  Google Scholar 

  47. Campo G, Guastaroba P, Marzocchi A et al (2013) Impact of COPD on long-term outcome after ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention. Chest 144:750–757. https://doi.org/10.1378/chest.12-2313

    Article  PubMed  Google Scholar 

  48. Enriquez JR, Parikh SV, Selzer F et al (2011) Increased adverse events after percutaneous coronary intervention in patients with COPD: insights from the national heart, lung, and blood institute dynamic registry. Chest 140:604–610. https://doi.org/10.1378/chest.10-2644

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gao D, Grunwald GK, Rumsfeld JS et al (2003) Variation in mortality risk factors with time after coronary artery bypass graft operation. Ann Thorac Surg 75:74–81. https://doi.org/10.1016/S0003-4975(02)04163-2

    Article  PubMed  Google Scholar 

  50. Mayr A, Mair J, Klug G et al (2011) Cardiac troponin T and creatine kinase predict mid-term infarct size and left ventricular function after acute myocardial infarction: a cardiac MR study. J Magn Reson Imaging 33:847–854. https://doi.org/10.1002/jmri.22491

    Article  PubMed  Google Scholar 

  51. Ko FWS, Yan BP, Lam Y et al (2016) Undiagnosed airflow limitation is common in patients with coronary artery disease and associated with cardiac stress. Respirology 21:137–142. https://doi.org/10.1111/resp.12668

    Article  PubMed  Google Scholar 

  52. Mota IL, Sousa ACS, Almeida MLD et al (2018) Coronary lesions in patients with COPD (global initiative for obstructive lung disease stages I–III) and suspected or confirmed coronary arterial disease. Int J Chron Obstruct Pulmon Dis 13:1999–2006. https://doi.org/10.2147/COPD.S162713

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dursunoglu N, Dursunoglu D, Yildiz AI et al (2015) Severity of coronary atherosclerosis in patients with COPD. Clin Respir J 11:751–756. https://doi.org/10.1111/crj.12412

    Article  Google Scholar 

  54. Engström G, Hedblad B, Janzon L, Valind S (2000) Respiratory decline in smokers and ex-smokers—an independent risk factor for cardiovascular disease and death. Eur J Prev Cardiol 7:267–272. https://doi.org/10.1177/204748730000700404

    Article  Google Scholar 

  55. Engström G, Wollmer P, Hedblad B et al (2001) Occurrence and prognostic significance of ventricular arrhythmia is related to pulmonary function: a study from “men born in 1914,” Malmö, Sweden. Circulation 103:3086–3091. https://doi.org/10.1161/01.CIR.103.25.3086

    Article  PubMed  Google Scholar 

  56. Salpeter SR, Ormiston TM, Salpeter EE (2004) Cardiovascular effects of β‑agonists in patients with asthma and COPD: a meta-analysis. Chest 125:2309–2321. https://doi.org/10.1378/chest.125.6.2309

    Article  CAS  PubMed  Google Scholar 

  57. Wang MT, Liou JT, Lin CW et al (2018) Association of cardiovascular risk with inhaled long-acting bronchodilators in patients with chronic obstructive pulmonary disease: a nested case-control study. JAMA Intern Med 178:229–238. https://doi.org/10.1001/jamainternmed.2017.7720

    Article  PubMed  PubMed Central  Google Scholar 

  58. Suissa S, Hemmelgarn B, Blais L, Ernst P (1996) Bronchodilators and acute cardiac death. Am J Respir Crit Care Med 154:1598–1602. https://doi.org/10.1164/ajrccm.154.6.8970341

    Article  CAS  PubMed  Google Scholar 

  59. Salpeter SR, Ormiston TM, Salpeter EE (2005) Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 4:CD3566. https://doi.org/10.1002/14651858.cd003566.pub2

    Article  Google Scholar 

  60. Rutten FH, Zuithoff NPA, Hak E et al (2010) β‑blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Arch Intern Med 170:880–887. https://doi.org/10.1001/archinternmed.2010.112

    Article  PubMed  Google Scholar 

  61. Dransfield MT, Rowe SM, Johnson JE et al (2008) Use of β blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax 63:301–305. https://doi.org/10.1136/thx.2007.081893

    Article  CAS  PubMed  Google Scholar 

  62. Short PM, Lipworth SIW, Elder DHJ et al (2011) Effect of β blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ 342:d2549. https://doi.org/10.1136/bmj.d2549

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bhatt SP, Wells JM, Kinney GL et al (2016) β‑Blockers are associated with a reduction in COPD exacerbations. Thorax 71:8–14. https://doi.org/10.1136/thoraxjnl-2015-207251

    Article  PubMed  Google Scholar 

  64. Nielsen AO, Pedersen L, Sode BF, Dahl M (2019) β‑Blocker therapy and risk of chronic obstructive pulmonary disease—a Danish nationwide study of 1·3 million individuals. EClinicalMedicine 29:21–26. https://doi.org/10.1016/j.eclinm.2019.01.004

    Article  Google Scholar 

  65. Kanazawa H, Hirata K, Yoshikawa J (2003) Effects of captopril administration on pulmonary haemodynamics and tissue oxygenation during exercise in ACE gene subtypes in patients with COPD: a preliminary study. Thorax 58:629–631. https://doi.org/10.1136/thorax.58.7.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Andreas S, Herrmann-Lingen C, Raupach T et al (2006) Angiotensin II blockers in obstructive pulmonary disease: a randomised controlled trial. Eur Respir J 27:972–979. https://doi.org/10.1183/09031936.06.00098105

    Article  CAS  PubMed  Google Scholar 

  67. Parikh MA, Aaron CP, Hoffman EA et al (2017) Angiotensin-converting inhibitors and angiotensin II receptor blockers and longitudinal change in percent emphysema on computed tomography the multi-ethnic study of atherosclerosis lung study. Ann Am Thorac Soc 14:649–658. https://doi.org/10.1513/AnnalsATS.201604-317OC

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mortensen EM, Copeland LA, Pugh MJV et al (2009) Impact of statins and ACE inhibitors on mortality after COPD exacerbations. Respir Res 10:45. https://doi.org/10.1186/1465-9921-10-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chandy D, Aronow WS, Banach M (2013) Current perspectives on treatment of hypertensive patients with chronic obstructive pulmonary disease. Integr Blood Press Control 6:101–109. https://doi.org/10.2147/IBPC.S33982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davis BB, Zeki AA, Bratt JM et al (2013) Simvastatin inhibits smoke-induced airway epithelial injury: Implications for COPD therapy. Eur Respir J 42:350–361. https://doi.org/10.1183/09031936.00042512

    Article  CAS  PubMed  Google Scholar 

  71. Neukamm A, Høiseth AD, Einvik G et al (2015) Rosuvastatin treatment in stable chronic obstructive pulmonary disease (RODEO): a randomized controlled trial. J Intern Med 278:59–67. https://doi.org/10.1111/joim.12337

    Article  CAS  PubMed  Google Scholar 

  72. Wang W, Le W, Ahuja R et al (2011) Inhibition of inflammatory mediators: role of statins in airway inflammation. Otolaryngol Head Neck Surg 144:982–987. https://doi.org/10.1177/0194599811400367

    Article  PubMed  Google Scholar 

  73. Lee TM, Chen CC, Shen HN, Chang NC (2009) Effects of pravastatin on functional capacity in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Clin Sci (Lond) 116:497–505. https://doi.org/10.1042/CS20080241

    Article  CAS  Google Scholar 

  74. Bartziokas K, Papaioannou AI, Minas M et al (2011) Statins and outcome after hospitalization for COPD exacerbation: a prospective study. Pulm Pharmacol Ther 24:625–631. https://doi.org/10.1016/j.pupt.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  75. Ingebrigtsen TS, Marott JL, Nordestgaard BG et al (2015) Statin use and exacerbations in individuals with chronic obstructive pulmonary disease. Thorax 70:33–40. https://doi.org/10.1136/thoraxjnl-2014-205795

    Article  PubMed  Google Scholar 

  76. Søyseth V, Brekke PH, Smith P, Omland T (2007) Statin use is associated with reduced mortality in COPD. Eur Respir J 29:279–283. https://doi.org/10.1183/09031936.00106406

    Article  PubMed  Google Scholar 

  77. Bando M, Miyazawa T, Shinohara H et al (2012) An epidemiological study of the effects of statin use on airflow limitation in patients with chronic obstructive pulmonary disease. Respirology 17:493–498. https://doi.org/10.1111/j.1440-1843.2011.02116.x

    Article  PubMed  Google Scholar 

  78. Alexeeff SE, Litonjua AA, Sparrow D et al (2007) Statin use reduces decline in lung function: VA normative aging study. Am J Respir Crit Care Med 176:742–747. https://doi.org/10.1164/rccm.200705-656OC

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ekström MP, Hermansson AB, Ström KE (2013) Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease: a time-dependent analysis. Am J Respir Crit Care Med 187:715–720. https://doi.org/10.1164/rccm.201208-1565OC

    Article  PubMed  Google Scholar 

  80. Harrison MT, Short P, Williamson PA et al (2014) Thrombocytosis is associated with increased short and long term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax 69:609–615. https://doi.org/10.1136/thoraxjnl-2013-203996

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dreher.

Ethics declarations

Conflict of interest

A. Daher and M. Dreher declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daher, A., Dreher, M. The bidirectional relationship between chronic obstructive pulmonary disease and coronary artery disease. Herz 45, 110–117 (2020). https://doi.org/10.1007/s00059-020-04893-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04893-4

Keywords

Schlüsselwörter

Navigation