Skip to main content
Log in

Left ventricular twist in hypertrophic cardiomyopathy

Predictor of nonsustained ventricular tachycardia

Linksventrikuläre Torsion bei hypertropher Kardiomyopathie

Prädiktor nichtanhaltender ventrikulärer Tachykardie

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

We investigated the efficacy of clinical and classic echocardiographic parameters in predicting the occurrence of nonsustained ventricular tachycardia (NsVT) in patients with hypertrophic cardiomyopathy (HCM).

Methods

The study comprised 59 patients with HCM (47 male, [80%]; mean age, 48.48 ± 14.16 years). Clinical, electrocardiographic, as well as classic two-dimensional and speckle-tracking echocardiography (STE) data were collected. All patients had Holter monitoring within 24–72 h of the echocardiographic examination. NsVT was defined as three or more consecutive premature wide QRS complexes with a heart rate of > 100 bpm. The patient population was categorized into groups based on the occurrence or absence of NsVT on the 24-h Holter recordings.

Results

NsVT was observed in 17 patients (29%). In these patients, higher twist (14.4 ± 3.8 vs.18 ± 7.9; p = 0.02), higher apical rotation (8.7 ± 4.2 vs. 12.2 ± 7; p = 0.02), higher sudden cardiac death risk score (4.4 ± 2.2 vs. 7 ± 3.3; p = 0.007), and decreased global longitudinal peak strain (GLPS; −12.8 ± 3.1 vs. −10.6 ± 2.8; p = 0.014) were observed. In the multivariate logistic regression analysis, including GLPS and twist, GLPS (Odds Ratio [OR]: 1.406; 95% CI: 1.087–1.818; p = 0.009) and twist (OR: 1.236; 95% CI: 1.056–1.446; p = 0.008) were found to be independent predictors of NsVT. In the receiver operating characteristic curve analysis, GLPS < −11.9% predicted NsVT with 82% sensitivity and 60% specificity (area under the curve [AUC]: 0.70; p = 0.014) and twist > 15.2° predicted NsVT with 70% sensitivity and 58% specificity (AUC: 0.69; p = 0.027).

Conclusion

Decreased GLPS and increased twist were predictive of NsVT in HCM patients. Parameters that can easily be measured with STE can help detect patients who may develop arrhythmia.

Zusammenfassung

Hintergrund

Die Autoren untersuchten die Bedeutung klinischer und klassischer Echokardiographieparameter für die Vorhersage des Auftretens einer nichtanhaltenden ventrikulären Tachykardie (NsVT) bei Patienten mit hypertropher Kardiomyopathie (HCM).

Methoden

Die Studie umfasste 59 Patienten mit HCM (47 m., d. h. 80 %; Durchschnittsalter: 48,48 ± 14,16 Jahre). Klinische, elektrokardiographische und klassische 2‑dimensionale sowie Speckle-Tracking-Echokardiographie(STE)-Daten wurden dokumentiert. Bei allen Patienten erfolgte ein Langzeit-EKG innerhalb von 24–72 h nach der echokardiographischen Untersuchung. NsVT war definiert als 3 oder mehr aufeinanderfolgende vorzeitige breite QRS-Komplexe mit einer Herzfrequenz von > 100/min. Die Patientenpopulation wurde in Gruppen eingeteilt, je nach Vorliegen von NsVT im 24-h-EKG.

Ergebnisse

NsVT wurde bei 17 Patienten festgestellt (29 %). Diese Patienten wiesen eine höhere Torsion auf (14,4 ± 3,8 vs.18 ± 7,9; p = 0,02), stärkere apikale Rotation (8,7 ± 4,2 vs. 12,2 ± 7; p = 0,02), einen höheren Risikowert für plötzlichen Herztod (4,4 ± 2,2 vs. 7 ± 3,3; p = 0,007) und eine verminderte globale longitudinale Spitzendeformation auf (GLPS; −12,8 ± 3,1 vs. −10,6 ± 2,8; p = 0,014). In der multivariaten logistischen Regressionsanalyse, einschließlich GLPS und Torsion, stellten sich GLPS (Odds Ratio, OR: 1,406; 95 %-KI: 1,087–1,818; p = 0,009) und Torsion (OR: 1,236; 95 %-KI: 1,056–1,446; p = 0,008) als unabhängige Prädiktoren einer NsVT heraus. In der Receiver-Operating-Characteristic(ROC)-Analyse ließ sich durch eine GLPS < −11,9 % eine NsVT mit 82 % Sensitivität und 60 % Spezifität (Fläche unter der Kurve, AUC: 0,70; p = 0,014) und durch eine Torsion > 15,2° eine NsVT mit 70 % Sensitivität und 58 % Spezifität (AUC: 0,69; p = 0,027) vorhersagen.

Schlussfolgerung

Eine verminderte GLPS und erhöhte Torsion waren Prädiktoren einer NsVT bei HCM-Patienten. Somit können einfach mit der STE zu bestimmende Parameter dazu beitragen, Patienten zu erkennen, bei denen sich möglicherweise eine Arrhythmie entwickelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Decker JA, Rossano JW, Smith EO, Cannon B, Clunie SK, Gates C, Jefferies JL, Kim JJ, Price JF, Dreyer WJ, Towbin JA, Denfield SW (2009) Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 54(3):250–254

    Article  Google Scholar 

  2. Kofflard MJ, Ten Cate FJ, van der Lee C, van Domburg RT (2003) Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol 41(6):987–993

    Article  Google Scholar 

  3. Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D’Andrea A et al (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 16:280

    Article  Google Scholar 

  4. Saumarez RC, Camm AJ, Panagos A, Gill JS, Stewart JT, de Belder MA et al (1992) Ventricular fibrillation in hypertrophic cardiomyopathy is associated with increased fractionation of paced right ventricular electrograms. Circulation 86:467–474

    Article  CAS  Google Scholar 

  5. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779

    Article  Google Scholar 

  6. Buja G, Miorelli M, Turrini P, Melacini P, Nava A (1993) Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 72:973–976

    Article  CAS  Google Scholar 

  7. D’Andrea A (2006) Prognostic value of intra-left ventricular electromechanical asynchrony in patients with hypertrophic cardiomyopathy. Eur Heart J 27:1311–1318

    Article  Google Scholar 

  8. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51:1369–1374

    Article  Google Scholar 

  9. O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk SCD). Eur Heart J 35:2010–2020

    Article  Google Scholar 

  10. Moustafa SE, Kansal M, Alharthi M, Deng Y, Chandrasekaran K, Mookadam F (2011) Prediction of incipient left ventricular dysfunction in patients with chronic primary mitral regurgitation: a velocity vector imaging study. Eur J Echocardiogr 12(4):291–298

    Article  Google Scholar 

  11. Tops LF, Delgado V, Marsan NA, Bax JJ (2017) Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur J Heart Fail 19(3):307–313. https://doi.org/10.1002/ejhf.694

    Article  PubMed  Google Scholar 

  12. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, Edvardsen T, Haugaa KH (2016) Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17(6):613–621

    Article  Google Scholar 

  13. Debonnaire P, Thijssen J, Leong DP, Joyce E, Katsanos S, Hoogslag GE, Schalij MJ, Atsma DE, Bax JJ, Delgado V, Marsan NA (2014) Global longitudinal strain and left atrial volume index improve prediction of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy patients. Int J Cardiovasc Imaging 30(3):549–558

    Article  Google Scholar 

  14. Funabashi N, Takaoka H, Horie S, Ozawa K, Daimon M, Takahashi M, Yajima R, Saito M, Fujiwara K, Tani A, Kamata T, Uehara M, Kataoka A, Kobayashi Y (2013) Regional peak longitudinal-strain by 2D speckle-tracking TTE provides useful information to distinguish fibrotic from non-fibrotic lesions in LV myocardium on cardiac MR in hypertrophic cardiomyopathy. Int J Cardiol 168(4):4520–4523

    Article  Google Scholar 

  15. Notomi Y, Lysyansky P, Setser RM et al (2005) Measurement of ventricular twist by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45:2034–2041

    Article  Google Scholar 

  16. Zhang HJ, Wang H, Sun T, Lu MJ, Xu N, Wu WC, Sun X, Wang WG, Lin QW (2014) Assessment of left ventricular twist mechanics by speckle tracking echocardiography reveals association between LV twist and myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 30(8):1539–1548. https://doi.org/10.1007/s10554-014-0509-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, Dorian P, Huikuri H, Kim YH, Knight B, Marchlinski F, Ross D, Sacher F, Sapp J, Shivkumar K, Soejima K, Tada H, Alexander ME, Triedman JK, Yamada T, Kirchhof P, Lip GY, Kuck KH, Mont L, Haines D, Indik J, Dimarco J, Exner D, Iesaka Y, Savelieva I (2014) EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace 16(9):1257–1283. https://doi.org/10.1093/europace/euu194

    Article  PubMed  Google Scholar 

  18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270

    Article  Google Scholar 

  19. Schabelman S, Schiller NB, Silverman NH, Ports TA (1981) Left atrial volume estimation by twodimensional echocardiography. Cathet Cardiovasc Diagn 7(2):165–178

    Article  CAS  Google Scholar 

  20. Jalanko M, Tarkiainen M, Sipola P, Jääskeläinen P, Lauerma K, Laine M, Nieminen MS, Laakso M, Heliö T, Kuusisto J (2016) Left ventricular mechanical dispersion is associated with nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Ann Med 48(6):417–427

    Article  Google Scholar 

  21. Correia E, Rodrigues B, Santos LF, Moreira D, Gama P, Cabral C, Santos O (2011) Longitudinal left ventricular strain in hypertrophic cardiomyopathy: correlation with nonsustained ventricular tachycardia. Echocardiography 28(7):709–714. https://doi.org/10.1111/j.1540-8175.2011.01427.x

    Article  PubMed  Google Scholar 

  22. Di Salvo G, Pacileo G, Limongelli G, Baldini L, Rea A, Verrengia M (2010) Nonsustained ventricular tachycardia in hypertrophic cardiomyopathy and new ultrasonic derived parameters. J Am Soc Echocardiogr 23:581–590

    Article  Google Scholar 

  23. Monserrat L, Elliott PM, Gimeno JR, Sharma S, Penas-Lado M, McKenna WJ (2003) Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol 42(5):873–879

    Article  Google Scholar 

  24. McKenna WJ, Sadoul N, Slade AK, Saumarez RC (1994) The prognostic significance of nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Circulation 90(6):3115–3117

    Article  CAS  Google Scholar 

  25. Maron BJ, Bonow RO, Cannon RO 3rd, Leon MB, Epstein SE (1987) Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med 316(13):780–789. https://doi.org/10.1056/NEJM198703263161305

    Article  CAS  PubMed  Google Scholar 

  26. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 8;115(18):2418–2425

    Article  Google Scholar 

  27. Funabashi N, Kataoka A, Horie S, Ozawa K, Takaoka H, Takahashi M, Yajima R, Saito M, Umazume T, Fujiwara K, Kamata T, Uehara M, Kobayashi Y (2013) Distinguishing 320 slice CT-detected focal fibrotic lesions and non-fibrotic lesions in hypertrophic cardiomyopathy by assessment of regional myocardial strain using two dimensional speckle tracking echocardiography. Int J Cardiol 30;169(6):e109–13

    Article  Google Scholar 

  28. Paraskevaidis IA, Farmakis D, Papadopoulos C, Ikonomidis I, Parissis J, Rigopoulos A, Iliodromitis EK, Kremastinos DT (2009) Two-dimensional strain analysis in patients with hypertrophic cardiomyopathy and normal systolic function: a 12-month follow-up study. Am Heart J 158(3):444–450

    Article  Google Scholar 

  29. Hartlage GR, Kim JH, Strickland PT, Cheng AC, Ghasemzadeh N, Pernetz MA, Clements SD, Williams BR 3rd (2015) The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31(3):557–565

    Article  Google Scholar 

  30. Ternacle J, Bremont C, d’Humieres T, Faivre L, Doan HL, Gallet R, Oliver L, Dubois-Randé JL, Lim P (2017) Left ventricular dyssynchrony and 2D and 3D global longitudinal strain for differentiating physiological and pathological left ventricular hypertrophy. Arch Cardiovasc Dis 2136(16):30213–30213

    Google Scholar 

  31. Reant P, Mirabel M, Lloyd G, Peyrou J, Lopez Ayala JM, Dickie S, Bulluck H, Captur G, Rosmini S, Guttmann O, Demetrescu C, Pantazis A, Tome-Esteban M, Moon JC, Lafitte S, McKenna WJ (2016) Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart 15;102(10):741–747

    Article  Google Scholar 

  32. De S, Borowski AG, Wang H, Nye L, Xin B, Thomas JD, Tang WH (2011) Subclinical echocardiographic abnormalities in phenotype-negative carriers of myosin-binding protein C3 gene mutation for hypertrophic cardiomyopathy. Am Heart J 162(2):262–267.e3

    Article  Google Scholar 

  33. Ozawa K, Funabashi N, Takaoka H, Kobayashi Y (2017) Successful MACE risk stratification in hypertrophic cardiomyopathy patients using different 2D speckle-tracking TTE approaches. Int J Cardiol 1;228:1015–1021

    Article  Google Scholar 

  34. Almaas VM, Haugaa KH, Strøm EH, Scott H, Dahl CP, Leren TP, Geiran OR, Endresen K, Edvardsen T, Aakhus S, Amlie JP (2013) Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace 15(9):1319–1327. https://doi.org/10.1093/europace/eut028

    Article  PubMed  Google Scholar 

  35. Maron BJ (2010) Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 121(3):445–456

    Article  Google Scholar 

  36. Kauer F, van Dalen BM, Michels M, Schinkel AF, Vletter WB, van Slegtenhorst M, Soliman OI, Geleijnse ML (2017) Delayed and decreased LV untwist and unstrain rate in mutation carriers for hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 18(4):383–389. https://doi.org/10.1093/ehjci/jew213

    Article  PubMed  Google Scholar 

  37. Sade LE, Demir Ö, Atar I, Müderrisoglu H, Özin B (2008) Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am J Cardiol 101:1163–1169

    Article  Google Scholar 

  38. Bertini M, Nucifora G, Marsan NA, Delgado V, van Bommel RJ, Boriani G et al (2009) Left ventricular rotational mechanics in acute myocardial infarction and in chronic (ischemic and nonischemic) heart failure patients. Am J Cardiol 103:1506–1512

    Article  Google Scholar 

  39. Han W, Xie M, Wang X, Lu Q (2008) Assessment of left ventricular global twist in essential hypertensive heart by speckle tracking imaging. J Huazhong Univ Sci Technol Med Sci 28:114–117

    Article  Google Scholar 

  40. Candan O, Hatipoglu Akpinar S, Dogan C, Demirkıran A, Dindar B, Bayram Z, Yılmaz F, Kaymaz C, Ozdemir N (2017) Twist deformation for predicting postoperative left ventricular function in patients with mitral regurgitation: A speckle tracking echocardiography study. Echocardiography 34(3):422–428. https://doi.org/10.1111/echo.13462

    Article  PubMed  Google Scholar 

  41. van Dalen BM, Kauer F, Michels M, Soliman OI, Vletter WB, van der Zwaan HB, ten Cate FJ, Geleijnse ML (2009) Delayed left ventricular untwisting in hypertrophic cardiomyopathy. J Am Soc Echocardiogr 22(12):1320–1326. https://doi.org/10.1016/j.echo.2009.07.021

    Article  PubMed  Google Scholar 

  42. Chang SA, Kim HK, Kim DH, Kim JC, Kim YJ, Kim HC, Sohn DW, Oh BH, Park YB (2010) Left ventricular twist mechanics in patients with apical hypertrophic cardiomyopathy: assessment with 2D speckle tracking echocardiography. Heart 96(1):49–55. https://doi.org/10.1136/hrt.2009.166629

    Article  PubMed  Google Scholar 

  43. Vriesendorp PA, Schinkel AF, Liebregts M, Theuns DA, van Cleemput J, Ten Cate FJ, Willems R, Michels M (2015) Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol 8(4):829–835 (Aug)

    Article  Google Scholar 

  44. Fernández A, Quiroga A, Ochoa JP, Mysuta M, Casabé JH, Biagetti M, Guevara E, Favaloro LE, Fava AM, Galizio N (2016) Validation of the 2014 European Society of Cardiology sudden cardiac death risk prediction model in hypertrophic cardiomyopathy in a reference center in South America. Am J Cardiol 118(1):121–126

    Article  Google Scholar 

  45. Maron BJ, Casey SA, Chan RH, Garberich RF, Rowin EJ, Maron MS (2015) Independent assessment of the European Society of Cardiology sudden death risk model for hypertrophic cardiomyopathy. Am J Cardiol 116(5):757–764 (Sep)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Candan MD.

Ethics declarations

Conflict of interest

O. Candan, C. Gecmen, A. Kalaycı, E. Bayam, A. Guner, S. Gunduz, S. Cersit, and M. Ozkan declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candan, O., Gecmen, C., Kalaycı, A. et al. Left ventricular twist in hypertrophic cardiomyopathy. Herz 44, 238–246 (2019). https://doi.org/10.1007/s00059-017-4633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4633-7

Keywords

Schlüsselwörter

Navigation