Skip to main content
Log in

Echtzeit-3-D-Echokardiographie zur Schweregradbeurteilung von Herzklappenvitien

Einfluss auf aktuelle Leitlinien

Real-time 3D echocardiography for estimation of severity in valvular heart disease

Impact on current guidelines

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Neben der räumlich-anatomischen Darstellung von Herzklappen verspricht die Echtzeit-3-D-Echokardiographie mit Hilfe des Farbdopplers eine genauere Klappenflussquantifizierung als herkömmliche 2‑D-Methoden. Insbesondere wurde die Quantifizierung des Regurgitationsflusses bei Mitralklappeninsuffizienz mittels der PISA („proximal isovelocity surface area“)-Methode und der VCA („vena contracta area“)-Methode in verschiedenen Studien validiert. Speziell die Beurteilung der VCA mittels Farbdoppler-Echtzeit-3-D-Echokardiographie (FD-3DE) führte zu einem Paradigmenwechsel im Verständnis der VCA, da sich die VCA in der Mehrzahl der Fälle als stark asymmetrisch zeigte. In der vorliegenden Arbeit werden der aktuelle Stellenwert und die klinische Anwendbarkeit der unterschiedlichen FD-3DE-basierten Methoden zur Schwergradbeurteilung von Herzklappenvitien, insbesondere von Klappeninsuffizienzen, ausführlich beschrieben.

Abstract

Besides providing spatial anatomic information on heart valves, real-time three-dimensional echocardiography (3DE) combined with color Doppler has the potential to overcome the limitations of flow quantification inherent to conventional 2D color Doppler methods. Recent studies validated the application of color Doppler 3DE (cD-3DE) for the quantification of regurgitation flow based on the vena contracta area (VCA) and the proximal isovelocity surface area (PISA) methods. Particularly the assessment of VCA by cD-3DE led to a change of paradigm by understanding of the VCA as being strongly asymmetric in the majority of patients and etiologies. This review provides a comprehensive description of the different concepts of cD-3DE-based flow quantification in the setting of different valvular heart diseases and their presentation in recent guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Lancellotti P, Rosenhek R, Pibarot P et al (2013) ESC Working Group on Valvular Heart Disease Position Paper – heart valve clinics: organization, structure, and experiences. Eurheart J 34:1597–1606

    Google Scholar 

  2. Yoganathan AP, Cape EG, Sung HW et al (1988) Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol 12:1344–1353

    Article  CAS  PubMed  Google Scholar 

  3. Baumgartner H, Schima H, Kuhn P (1991) Value and limitations of proximal jet dimensions for the quantitation of valvular regurgitation: an in vitro study using Doppler flow imaging. J Am Soc Echocardiogr 4:57–66

    Article  CAS  PubMed  Google Scholar 

  4. Fehske W, Omran H, Manz M et al (1994) Color-coded doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274

    Article  CAS  PubMed  Google Scholar 

  5. Hall SA, Brickner ME, Willett DL et al (1997) Assessment of mitral regurgitation severity by doppler color flow mapping of the vena contracta. Circulation 95:636–642

    Article  CAS  PubMed  Google Scholar 

  6. Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area – physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    Article  CAS  PubMed  Google Scholar 

  7. Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743

    Article  PubMed  Google Scholar 

  8. Yosefy C, Levine RA, Solis J et al (2007) Proximal flow convergence region as assessed by real-time 3‑dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20:389–396

    Article  PubMed  Google Scholar 

  9. Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921

    Article  PubMed  Google Scholar 

  10. Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  11. Lancellotti P, Moura L, Pierard LA et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    Article  PubMed  Google Scholar 

  12. Grayburn PA, Weissman NJ, Zamorano JL (2012) Quantitation of mitral regurgitation. Circulation 126:2005–2017

    Article  PubMed  Google Scholar 

  13. Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  PubMed  Google Scholar 

  14. Bonow RO, Carabello RA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 48:e1–e148

    Article  PubMed  Google Scholar 

  15. Buck T, Plicht B, Erbel R (2006) Current recommendations on echocardiographic evaluation of the severity of mitral regurgitation: standardization and practical application using a scoring system. Herz 31:30–37

    Article  PubMed  Google Scholar 

  16. Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46

    Article  PubMed  Google Scholar 

  17. Buck T (2015) Valvular heart disease – insufficiencies. In: Buck T, Franke A, Monaghan MJ (Hrsg). Three-dimensional echocardiography (2. Aufl.). Springer, Berlin Heidelberg, S 117–170

    Google Scholar 

  18. Buck T, Plicht B, Kahlert P, Erbel R (2013) Understanding the asymmetrical vena contracta area: the difficult relationship between 2D and 3D measurements. JACC Cardiovasc Imaging 6:744

    Article  PubMed  Google Scholar 

  19. Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252

    Article  PubMed  Google Scholar 

  20. Plicht B, Kahlert P, Goldwasser R et al (2008) Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr 21:1337–1346

    Article  PubMed  Google Scholar 

  21. Skaug TR, Hergum T, Amundsen BH et al (2010) Quantification of mitral regurgitation using high pulse repetition frequency three-dimensional color doppler. J Am Soc Echocardiogr 23:1–8

    Article  PubMed  Google Scholar 

  22. Recusani F, Bargiggia GS, Yoganathan AP et al (1991) A new method for quantification of regurgitant flow rate using color flow imaging of the flow convergence region proximal to a discrete orifice: an vitro study. Circulation 83:594–604

    Article  CAS  PubMed  Google Scholar 

  23. Utsunomiya T, Ogawa T, Doshi R et al (1991) Doppler color flow „proximal isovelocity surface area“ method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17:1103–1111

    Article  CAS  PubMed  Google Scholar 

  24. Buck T, Jansen CHP, Yoganathan AP et al (1998) Hemisphere versus hemiellipse: when is each most accurate for proximal isovelocity calculation of regurgitant flows. J Am Coll Cardiol 31:385A

    Article  Google Scholar 

  25. Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637

    Article  PubMed  Google Scholar 

  26. Matsumura Y, Saracino G, Sugioka K et al (2008) Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 21:1251–1256

    Article  PubMed  Google Scholar 

  27. Ziani AB, Latcu DG, Abadir S et al (2009) Assessment of proximal isovelocity surface area (PISA) shape using three-dimensional echocardiography in a paediatric population with mitral regurgitation or ventricular shunt. Arch Cardiovasc Dis 102:185–191

    Article  PubMed  Google Scholar 

  28. Matsumura Y, Fukuda S, Tran H et al (2008) Geometry of the proximal isovelocity surface area in mitral regurgitation by 3‑dimensional color doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 155:231–238

    Article  PubMed  Google Scholar 

  29. Ashikhmina E, Shook D, Cobey F et al (2015) Three-dimensional versus two-dimensional echocardiographic assessment of functional mitral regurgitation proximal isovelocity surface area. Anesth Analg 120:534–542

    Article  PubMed  Google Scholar 

  30. Quaini A, Canic S, Guidoboni G et al (2011) A three-dimensional computational fluid dynamics model of regurgitant mitral valve flow: validation against in vitro standards and 3D color doppler methods. Cardiovasc Eng Technol 2:77–89

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grady L, Datta S, Kutter O et al (2011) Regurgitation quantification using 3D PISA in volume echocardiography. Med Image Comput Comput Assist Interv 14:512–519

    PubMed  Google Scholar 

  32. de Agustin JA, Marcos-Alberca P, Fernandez-Golfin C et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25:815–823

    Article  PubMed  Google Scholar 

  33. Thavendiranathan P, Liu S, Datta S et al (2013) Quantification of chronic functional mitral regurgitation by automated 3‑dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3‑dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging 6:125–133

    Article  PubMed  Google Scholar 

  34. Otsuji Y, Handschumacher MD, Schwammenthal E et al (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008

    Article  CAS  PubMed  Google Scholar 

  35. Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764

    Article  CAS  PubMed  Google Scholar 

  36. Little SH, Pirat B, Kumar R et al (2008) Three-dimensional color doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging 1:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700

    Article  PubMed  Google Scholar 

  38. Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3‑dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hyodo E, Iwata S, Tugcu A et al (2012) Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 5:669–676

    Article  PubMed  Google Scholar 

  40. Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513

    Article  PubMed  PubMed Central  Google Scholar 

  41. Plicht B, Kahlert P, Grave T et al (2012) Immediate reduction of RT3D color Doppler vena contracta area after transcatheter mitral leaflet repair: Influence of the EVEREST criteria. Eur J Echocardiography 13(S1):i184

    Google Scholar 

  42. Altiok E, Hamada S, Brehmer K et al (2012) Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging 5:748–755

    Article  PubMed  Google Scholar 

  43. Buck T, Mucci RA, Guerrero JL et al (2000) The power-velocity integral at the vena contracts – A new method for direct quantification of regurgitant volume flow. Circulation 102:1053–1061

    Article  CAS  PubMed  Google Scholar 

  44. Buck T, Plicht B, Hunold P et al (2005) Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology – A new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area. J Am Coll Cardiol 45:770–779

    Article  PubMed  Google Scholar 

  45. Hopmeyer J, He S, Thorvig KM et al (1998) Estimation of mitral regurgitation with a hemielliptic curve-fitting algorithm: in vitro experiments with native mitral valves. J Am Soc Echocardiogr 11:322–331

    Article  CAS  PubMed  Google Scholar 

  46. Choi J, Heo R, Hong GR et al (2014) Differential effect of 3‑dimensional color doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ Cardiovasc Imaging 7:535–544

    Article  PubMed  Google Scholar 

  47. Chandra S, Salgo IS, Sugeng L et al (2011) A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol 301:H1015–H1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal Isovelocity surface area method. J Am Coll Cardiol 52:767–778

    Article  PubMed  Google Scholar 

  49. Schmidt FP, Gniewosz T, Jabs A et al (2014) Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging 30:1501–1508

    Article  PubMed  Google Scholar 

  50. Thomas L, Foster E, Hoffman JI, Schiller NB (1999) The mitral regurgitation index: an echocardiographic guide to severity. J Am Coll Cardiol 33:2016–2022

    Article  CAS  PubMed  Google Scholar 

  51. Son JW, Chang HJ, Lee JK et al (2013) Automated quantification of mitral regurgitation by three dimensional real time full volume color doppler transthoracic echocardiography: a validation with cardiac magnetic resonance imaging and comparison with two dimensional quantitative methods. J Cardiovasc Ultrasound 21:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chu JW, Levine RA, Chua S et al (2008) Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:1006–1009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zamorano J, Cordeiro P, Sugeng L et al (2004) Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 43:2091–2096

    Article  PubMed  Google Scholar 

  54. de Agustin JA, Mejia H, Viliani D, Marcos-Alberca P et al (2014) Proximal flow convergence method by three-dimensional color doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis. J Am Soc Echocardiogr 27:838–845

    Article  PubMed  Google Scholar 

  55. Fang L, Hsiung MC, Miller AP et al (2005) Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography 22:775–781

    Article  PubMed  Google Scholar 

  56. Chin CH, Chen CH, Lo HS (2010) The correlation between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography 27:161–166

    Article  PubMed  Google Scholar 

  57. Ewe SH, Delgado V, van Geest R (2013) Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol 112:560

    Article  PubMed  Google Scholar 

  58. Sato H, Ohta T, Hiroe K et al (2015) Severity of aortic regurgitation assessed by area of vena contracta: a clinical two-dimensional and three-dimensional color Doppler imaging study. Cardiovasc Ultrasound 13:24

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poh KK, Levine RA, Solis J et al (2008) Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. Eur Heart J 29:2526–2535

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tribouilloy CM, Enriquez-Sarano M, Bailey KR et al (2000) Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol 36:472–478

    Article  CAS  PubMed  Google Scholar 

  61. de Agustin JA, Viliani D, Vieira C et al (2013) Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr 26:1063–1072

    Article  PubMed  Google Scholar 

  62. Zamorano JL, Badano LP, Bruce C et al (2011) EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur J Echocardiogr 12:557–584

    Article  PubMed  Google Scholar 

  63. Kim MS, Casserly IP, Garcia JA et al (2009) Percutaneous transcatheter closure of prosthetic mitral paravalvular leaks: are we there yet? JACC Cardiovasc Interv 2:81–90

    Article  PubMed  Google Scholar 

  64. Becerra JM, Almeria C, de Isla PL, Zamorano J (2009) Usefulness of 3D transoesophageal echocardiography for guiding wires and closure devices in mitral perivalvular leaks. Eur J Echocardiogr 10:979–981

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Buck FESC, FACC.

Ethics declarations

Interessenkonflikt

T. Buck, L. Bösche und B. Plicht geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buck, T., Bösche, L. & Plicht, B. Echtzeit-3-D-Echokardiographie zur Schweregradbeurteilung von Herzklappenvitien. Herz 42, 241–254 (2017). https://doi.org/10.1007/s00059-017-4540-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4540-y

Schlüsselwörter

Keywords

Navigation