Skip to main content
Log in

Alveolar bone changes around maxillary incisors after intrusion and retraction with controlled tipping versus bodily movement

A retrospective cone-beam computed tomography study

Veränderungen des Alveolarknochens um die oberen Inzisiven nach Intrusion und Retraktion mit kontrolliertem Kippen gegenüber körperlicher Bewegung

Eine retrospektive DVT(digitale Volumentomographie)-Studie

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

To compare the effect of maxillary incisor intrusion and retraction with controlled tipping (CT) versus bodily movement (BM) in extraction cases on alveolar bone height and thickness, using cone-beam computed tomography (CBCT). Correlations between changes in alveolar dimensions and crown or root retraction, incisor inclination, and intrusion were also investigated.

Materials and methods

In all, 144 incisors of 36 women were retrospectively evaluated. All patients were treated with anterior intrusion and retraction with either controlled tipping (CT) (group 1) or bodily movement (BM) (group 2). CBCT scans were taken before and after retraction and intrusion and measurements of alveolar bone height and thickness at the level of mid-root and root apex were measured. The prevalence of dehiscence was also calculated.

Results

Labial bone thickness (BT) increased at the level of the root apex with increased total BT in the CT group (p < 0.05). The BM group showed decreased palatal BT. Significant vertical bone loss with an increased incidence of dehiscences occurred on the palatal side in both groups. Changes in palatal bone area was negatively correlated with the amount of root apex retraction, while the total BT at the level of root apex was positively correlated with amount of intrusion.

Conclusions

Bodily retraction can result in reduced palatal bone dimensions and an increase risk of iatrogenic sequelae following anterior retraction in extraction cases. Vertical bone loss and an increased incidence of dehiscences is to be expected following anterior retraction. Careful attention must be paid to the bone boundary conditions to avoid moving the incisors out of the alveolar housing.

Zusammenfassung

Zielsetzung

Vergleich der Auswirkungen der Intrusion und Retraktion des oberen Schneidezahns mit kontrolliertem Kippen („controlled tipping“, CT) und körperlicher Bewegung („bodily movement“, BM) bei Extraktionen auf die Höhe und Dicke des Alveolarknochens mithilfe digitaler Volumentomographie (DVT). Ferner wurden Korrelationen zwischen Veränderungen der Alveolardimensionen und Kronen- bzw. Wurzelretraktion, Schneidezahnneigung und Intrusion untersucht.

Materialien und Methoden

Insgesamt wurden 144 Schneidezähne von 36 Frauen retrospektiv ausgewertet. Alle Patientinnen wurden mit anteriorer Intrusion und Retraktion entweder mit CT (Gruppe 1) oder BM (Gruppe 2) behandelt. Vor und nach der Retraktion und Intrusion wurden DVT-Aufnahmen angefertigt sowie Höhe und Dicke des Alveolarknochens auf der Höhe der mittleren Wurzel und der Wurzelspitze gemessen. Zudem wurde die Prävalenz der Dehiszenz berechnet.

Ergebnisse

Die labiale Knochendicke (BT) nahm auf Höhe der Wurzelspitze zu, wobei die Gesamt-BT in der CT-Gruppe zunahm (p < 0,05). In der BM-Gruppe war die palatinale BT verringert. Auf der palatinalen Seite kam es in beiden Gruppen zu einem signifikanten vertikalen Knochenverlust mit einer erhöhten Inzidenz von Dehiszenzen. Die Veränderungen der palatinalen Knochenfläche waren negativ mit dem Ausmaß der Wurzelspitzenretraktion korreliert, die Gesamt-BT auf Höhe der Wurzelspitze dagegen positiv mit dem Ausmaß der Intrusion.

Schlussfolgerungen

Körperliche Retraktion kann zu einer Verringerung der palatinalen Knochendimensionen und zu einem erhöhten Risiko iatrogener Folgeerscheinungen nach anteriorer Retraktion bei Extraktionen führen. Nach einer anterioren Retraktion ist mit einem vertikalen Knochenverlust und einer erhöhten Inzidenz von Dehiszenzen zu rechnen. Um eine Verschiebung der Inzisiven aus ihrem alveolären Umfeld zu vermeiden, ist eine sorgfältige Berücksichtigung der Knochenrandbedingungen erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BM:

Bodily movement

BT:

Bone thickness

CBCT:

Cone-beam computed tomography

CT:

Controlled tipping

LACH:

Labial alveolar crest height

LBT:

Labial bone thickness

PACH:

Palatal alveolar crest height

PBT:

Palatal bone thickness

TBT:

Total bone thickness

References

  1. Melsen B (1999) Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 69(2):151–158

    PubMed  Google Scholar 

  2. Korayem M, Flores-Mir C, Nassar U, Olfert K (2008) Implant site development by orthodontic extrusion. A systematic review. Angle Orthod 78(4):752–760

    Article  PubMed  Google Scholar 

  3. Handelman CS (1996) The anterior alveolus: its importance in limiting orthodontic treatment and its influence on the occurrence or iatrogenic sequelae. Angle Orthod 66:95–110

    PubMed  Google Scholar 

  4. Garib DG, Yatabe MS, Ozawa TO, Silva Filho OGD (2010) Alveolar bone morphology under the perspective of the computed tomography: defining the biological limits of tooth movement. Dental Press J Orthod 15(5):192–205

    Article  Google Scholar 

  5. Sadek MM, Sabet NE, Hassan IT (2015) Alveolar bone mapping in subjects with different vertical facial dimensions. Eur J Orthod 37(2):194–201

    Article  PubMed  Google Scholar 

  6. Wainwright WM (1973) Faciolingual tooth movement: its influence on the root and cortical plate. Am J Orthod 64(3):278–302

    Article  PubMed  Google Scholar 

  7. Son EJ, Kim SJ, Hong C, Chan V, Sim HY, Ji S, Hong SY, Baik UB, Shin JW, Kim YH, Chae HS (2020) A study on the morphologic change of palatal alveolar bone shape after intrusion and retraction of maxillary incisors. Sci Rep 10(1):14454

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oppenheim A (2007) Tissue changes, particularly of the bone, incident to tooth movement. Eur J Orthod 29,(suppl_1):i2–i15

    Article  Google Scholar 

  9. Vardimon AD, Oren E, Ben-Bassat Y (1998) Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements. Am J Orthod Dentofacial Orthop 114(5):520–529

    Article  PubMed  Google Scholar 

  10. Hong SY, Shin JW, Hong C, Chan V, Baik UB, Kim YH, Chae HS (2019) Alveolar bone remodeling during maxillary incisor intrusion and retraction. Prog Orthod 20(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo R, Zhang L, Hu M, Huang Y, Li W (2021) Alveolar bone changes in maxillary and mandibular anterior teeth during orthodontic treatment: a systematic review and meta-analysis. Orthod Craniofac Res 24(2):165–179

    Article  PubMed  Google Scholar 

  12. Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG (2007) Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:534–542

    Article  PubMed  Google Scholar 

  13. von Elm E, Altman DG, Egger M et al (2014) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg 12:1495–1499

    Article  Google Scholar 

  14. Sarikaya S, Haydar B, Ciğer S, Ariyürek M (2002) Changes in alveolar bone thickness due to retraction of anterior teeth. Am J Orthod Dentofacial Orthop 122(1):15–26

    Article  PubMed  Google Scholar 

  15. Chung KR, Kim SH, Kook YA, Choo H (2008) Anterior torque control using partial-osseointegrated mini-implants:biocreative therapy type II technique. World J Orthod 9:105–113

    PubMed  Google Scholar 

  16. Mo SS, Kim SH, Sung SJ, Chung KR, Chun YS, Kook YA, Nelson G (2011) Factors controlling anterior torque with C‑implants depend on en-masse retraction without posterior appliances: biocreative therapy type II technique. Am J Orthod Dentofacial Orthop 139(2):e183–e191

    Article  PubMed  Google Scholar 

  17. Alsino HI, Hajeer MY, Alkhouri I, Murad RMT (2022) The diagnostic accuracy of Cone-Beam Computed Tomography (CBCT) imaging in detecting and measuring dehiscence and fenestration in patients with class I malocclusion: a surgical-exposure-based validation study. Cureus 14(3):e22789

    PubMed  PubMed Central  Google Scholar 

  18. Dahlberg G (1940) Statistical methods for medical and biological students. Br Med J 2:358–359

    Article  Google Scholar 

  19. Yodthong N, Charoemratrote C, Leethanakul C (2013) Factors related to alveolar bone thickness during upper incisor retraction. Angle Orthod 83(3):394–401

    Article  PubMed  Google Scholar 

  20. Eksriwong T, Thongudomporn U (2021) Alveolar bone response to maxillary incisor retraction using stable skeletal structures as a reference. Angle Orthod 91(1):30–35

    Article  PubMed  Google Scholar 

  21. Jäger F, Mah JK, Bumann A (2017) Peridental bone changes after orthodontic tooth movement with fixed appliances: a cone-beam computed tomographic study. Angle Orthod 87(5):672–680

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mao H, Yang A, Pan Y, Li H, Lei L (2020) Displacement in root apex and changes in incisor inclination affect alveolar bone remodeling in adult bimaxillary protrusion patients: a retrospective study. Head Face Med 16(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang F, Lee SC, Lee JB, Lee KM (2020) Geometric analysis of alveolar bone around the incisors after anterior retraction following premolar extraction. Angle Orthod 90(2):173–180

    Article  PubMed  Google Scholar 

  24. Thongudomporn U, Charoemratrote C, Jearapongpakorn S (2014) Changes of anterior maxillary alveolar bone thickness following incisor proclination and extrusion. Angle Orthod 85(4):549–554

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Cai P (2023) Association between alveolar bone height changes in mandibular incisors and three-dimensional tooth movement in non-extraction orthodontic treatment with invisalign. Orthod Craniofac Res 26(1):91–99

    Article  PubMed  Google Scholar 

  26. Atik E, Gorucu-Coskuner H, Akarsu-Guven B, Taner T (2018) Evaluation of changes in the maxillary alveolar bone after incisor intrusion. Korean J Orthod 48(6):367–376

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H (2011) Effect of bone thickness on alveolar bone-height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 139:e117–e127

    Article  PubMed  Google Scholar 

  28. Molen AD (2010) Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am J Orthod Dentofacial Orthop 137:S130–S135

    Article  PubMed  Google Scholar 

Download references

Funding

The work was self-funded by the author.

Author information

Authors and Affiliations

Authors

Contributions

Mais Medhat Sadek performed the clinical work, measurements and analysis, as well as prepared the manuscript for publication. Ramy Gaber participated in the clinical work and preparing the manuscript.

Corresponding author

Correspondence to Mais Medhat Sadek.

Ethics declarations

Conflict of interest

M.M. Sadek and R. Gaber declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. The protocol of this study was approved by the Ethical Committee of the Faculty of Dentistry, Ain Shams University (approval number: FDASU-RecIR102210). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data

Data and material on which the conclusions rely on are available on request to the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, M.M., Gaber, R.M. Alveolar bone changes around maxillary incisors after intrusion and retraction with controlled tipping versus bodily movement. J Orofac Orthop (2023). https://doi.org/10.1007/s00056-023-00493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00056-023-00493-z

Keywords

Schlüsselwörter

Navigation