Skip to main content
Log in

Three-dimensional zygomatic changes after rapid maxillary expansion in growing patients

Dreidimensionale Jochbeinveränderungen nach schneller Gaumennahterweiterung bei heranwachsenden Patienten

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

To assess the effects of rapid maxillary expansion (RME) treatment on the zygomatic bone complex (ZBC).

Methods

In this single-center retrospective study, pre- and posttreatment cone-beam computed tomography (CBCT) images of 38 patients treated with RME were analyzed to investigate changes in the coordinates of the ZBC landmarks. At the start of treatment (T0), the patients’ mean age was 11.1 ± 3.8 years (range 8.3–14.9 years). Cohen’s d test was used to evaluate statistical differences.

Results

There were statistically significant differences between T0 and T1 (P < 0.01) in the measurement values for the maxillary transverse width (ΔT: 3.18 ± 2.58, d: 1.23), frontozygomatic sutures (ΔT: 1.09 ± 0.56, d: 0.43), lowest point of the zygomaticomaxillary sutures (ΔT: 3.16 ± 1.78, d: 0.78), frontomaxillary angular parameter (right side ΔT: 2.81 ± 1.63, d: 1.73; left side ΔT: 2.52 ± 1.20, d: 2.10), frontozygomatic angular parameter (right side ΔT: 2.81 ± 1.63 d: 1.07; left side ΔT: 2.21 ± 2.79, d: 0.61), anterior intermaxillary distance (ΔT: 2.11 ± 1.42, d: 0.99), interzygomaticotemporal distance (ΔT: 2.00 ± 2.42, d: 0.99), and zygomatic angular parameter (right side ΔT: 2.06 ± 1.29, d: 1.6; left side ΔT: 2.02 ± 1.86, d: 1.09).

Conclusions

After RME in growing patients, the zygomatic bone showed pyramidal expansion in the coronal plane and parallel palatal expansion in the axial plane. In addition, significant lateral relocation of the zygomatic bone occurred. The zygomatic bone tended to rotate outward in conjunction with the maxilla, with a typical center of rotation close to the superior side of the frontozygomatic suture. These results shed light on the patterns of skeletal expansion in the zygomatic bone associated with RME in growing patients.

Zusammenfassung

Zielsetzung

Untersucht werden sollten die Auswirkungen einer RME(„rapid maxillary expansion“)-Behandlung auf den Jochbeinkomplex (ZBC).

Methoden

In dieser retrospektiven Studie wurden die DVT(digitale Volumentomographie)-Aufnahmen von 38 mit RME behandelten Patienten vor und nach der Behandlung ausgewertet, um Veränderungen in den Koordinaten von ZBC-Referenzpunkten zu untersuchen. Zu Behandlungsbeginn (T0) betrug das Durchschnittsalter der Patienten 11,1 ± 3,8 Jahre (Range 8,3–14,9). Zur Auswertung der statistischen Unterschiede wurde der Cohen d-Test verwendet.

Ergebnisse

Es gab statistisch signifikante Unterschiede zwischen T0 und T1 (p < 0,01) bei den Messwerten für die maxilläre Transversalbreite (ΔT: 3,18 ± 2,58, d: 1,23), die frontozygomatischen Nähte (ΔT: 1,09 ± 0,56, d: 0,43), den tiefsten Punkt der zygomaticomaxillären Nähte (ΔT: 3,16 ± 1,78, d: 0,78), die frontomaxillären Winkelparameter (rechts ΔT: 2,81 ± 1,63, d: 1,73, links ΔT: 2,52 ± 1,20, d: 2,10), den frontozygomatischen Winkelparameter (rechts ΔT: 2,81 ± 1,63, d: 1,07, links ΔT: 2,21 ± 2,79, d: 0,61), den anterioren intermaxillären (ΔT: 2,11 ± 1,42, d: 0,99) und den interzygomatotemporalen Abstand (ΔT: 2,00 ± 2,42, d: 0,99), sowie den zygomatischen Winkelparameter (rechts ΔT: 2,06 ± 1,29, d: 1,6, links ΔT: 2,02 ± 1,86, d: 1,09).

Schlussfolgerungen

Nach RME bei wachsenden Patienten zeigte das Jochbein eine pyramidale Expansion in der koronalen Ebene und eine parallele palatinale Expansion in der axialen Ebene. Ferner kam es zu einer signifikanten lateralen Verlagerung des Jochbeins. Tendenziell rotierte das Jochbein in Verbindung mit dem Oberkiefer nach außen, mit einem typischen Rotationszentrum nahe der oberen Seite der frontozygomatischen Naht. Diese Resultate vermitteln einen Eindruck von den Mustern der skelettalen Jochbeinexpansion im Kontext mit einer RME bei wachsenden Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  1. Baccetti T, Franchi L, Cameron CG, McNamara JA (2001) Treatment timing for rapid maxillary expansion. Angle Orthod 71:343–350. https://doi.org/10.1043/0003-3219(2001)071〈0343:TTFRME〉2.0.CO;2

    PubMed  Google Scholar 

  2. Baldawa RS, Bhad WA (2011) Stress distribution analysis during an intermaxillary dysjunction: a 3‑D FEM study of an adult human skull. Ann Maxillofac Sur 1:19. https://doi.org/10.4103/2231-0746.83148

    Article  Google Scholar 

  3. Baldini A, Nota A, Santariello C, Caruso S, Assi V, Ballanti F, Gatto R, Cozza P (2018) Sagittal dentoskeletal modifications associated with different activation protocols of rapid maxillary expansion. Eur J Paediatr Dent 19:151–155. https://doi.org/10.23804/ejpd.2018.19.02.10

    Article  PubMed  Google Scholar 

  4. Baydas B, Yavuz I, Uslu H, Dagsuyu IM, Ceylan I (2006) Nonsurgical rapid maxillary expansion effects on craniofacial structures in young adult females. A bone scintigraphy study. Angle Orthod 76:759–767. https://doi.org/10.1043/0003-3219(2006)076[0759:NRMEEO]2.0.CO;2

    Article  PubMed  Google Scholar 

  5. Bazargani F, Feldmann I, Bondemark L (2013) Three-dimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod 83:1074–1082. https://doi.org/10.2319/020413-103.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berger JL, Pangrazio-Kulbersh V, Borgula T, Kaczynski R (1998) Stability of orthopedic and surgically assisted rapid palatal expansion over time. Am J Orthod Dentofacial Orthop 114:638–645. https://doi.org/10.1016/S0889-5406(98)70195-7

    Article  PubMed  Google Scholar 

  7. Braun S, Bottrel JA, Lee K‑G, Lunazzi JJ, Legan HL (2000) The biomechanics of rapid maxillary sutural expansion. Am J Orthod Dentofacial Orthop 118:257–261. https://doi.org/10.1067/mod.2000.108254

    Article  PubMed  Google Scholar 

  8. Brunetto DP, Sant’Anna EF, Machado AW, Moon W (2017) Non-surgical treatment of transverse deficiency in adults using microimplant-assisted rapid palatal expansion (MARPE). Dental Press J Orthod 22:110–125. https://doi.org/10.1590/2177-6709.22.1.110-125.sar

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bucci R, D’Antò V, Rongo R, Valletta R, Martina R, Michelotti A (2016) Dental and skeletal effects of palatal expansion techniques: a systematic review of the current evidence from systematic reviews and meta-analyses. J Oral Rehabil 43:543–564. https://doi.org/10.1111/joor.12393

    Article  PubMed  Google Scholar 

  10. Cantarella D, Dominguez-Mompell R, Mallya SM, Moschik C, Pan HC, Miller J, Moon W (2017) Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging. Prog Orthod 18:34. https://doi.org/10.1186/s40510-017-0188-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cantarella D, Dominguez-Mompell R, Moschik C, Mallya SM, Pan HC, Alkahtani MR, Elkenawy I, Moon W (2018) Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 154:337–345. https://doi.org/10.1016/j.ajodo.2017.11.033

    Article  PubMed  Google Scholar 

  12. Carlson C, Sung J, McComb RW, Machado AW, Moon W (2016) Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofacial Orthop 149:716–728. https://doi.org/10.1016/j.ajodo.2015.04.043

    Article  PubMed  Google Scholar 

  13. Cevidanes LHC, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JFC (2009) Superimposition of 3‑dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofacial Orthop 136:94–99. https://doi.org/10.1016/j.ajodo.2009.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dejak B, Mlotkowski A, Romanowicz M (2005) Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction. J Prosthet Dent 94:520–529. https://doi.org/10.1016/j.prosdent.2005.10.001

    Article  PubMed  Google Scholar 

  15. Gardner GE, Kronman JH (1971) Cranioskeletal displacements caused by rapid palatal expansion in the rhesus monkey. Am J Orthod 59:146–155. https://doi.org/10.1016/0002-9416(71)90046-7

    Article  PubMed  Google Scholar 

  16. Garib DG, Henriques JFC, Janson G, Freitas MR, Coelho RA (2005) Rapid maxillary expansion—tooth tissue-borne versus tooth-borne expanders: a computed tomography evaluation of dentoskeletal effects. Angle Orthod 75:548–557. https://doi.org/10.1043/0003-3219(2005)75[548:RMETVT]2.0.CO;2

    Article  PubMed  Google Scholar 

  17. Gautam P, Valiathan A, Adhikari R (2007) Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofacial Orthop 132:5.e1–5.e11. https://doi.org/10.1016/j.ajodo.2006.09.044

    Article  PubMed  Google Scholar 

  18. Ghoneima A, Abdel-Fattah E, Hartsfield J, El-Bedwehi A, Kamel A, Kula K (2011) Effects of rapid maxillary expansion on the cranial and circummaxillary sutures. Am J Orthod Dentofacial Orthop 140:510–519. https://doi.org/10.1016/j.ajodo.2010.10.024

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haas AJ (1965) The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod 35:200–217. https://doi.org/10.1043/0003

    PubMed  Google Scholar 

  20. Holberg C (2005) Effects of rapid maxillary expansion on the cranial base—an FEM-analysis. J Orofac Orthop 66:54–66. https://doi.org/10.1007/s00056-005-0439-y

    Article  PubMed  Google Scholar 

  21. Işeri H, Tekkaya AE, Öztan Ö, Bilgiç S (1998) Biomechanical effects of rapid maxillary expansion on the craniofacial skeleton, studied by the finite element method. Eur J Orthod 20:347–356. https://doi.org/10.1093/ejo/20.4.347

    Article  PubMed  Google Scholar 

  22. Jafari A, Shetty KS, Kumar M (2003) Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces—a three-dimensional FEM study. Angle Orthod 73:12–20. https://doi.org/10.1043/0003-3219(2003)073〈0012:SOSDAD〉2.0.CO;2

    PubMed  Google Scholar 

  23. Jain V, Shyagali TR, Kambalyal P, Rajpara Y, Doshi J (2017) Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis. Prog Orthod 18:3. https://doi.org/10.1186/s40510-016-0157-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469.e1–469.e32. https://doi.org/10.1016/j.ajodo.2005.10.007

    Article  PubMed  Google Scholar 

  25. Lee K‑G, Ryu Y‑K, Park Y‑C, Rudolph DJ (1997) A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction. Am J Orthod Dentofacial Orthop 111:623–632. https://doi.org/10.1016/S0889-5406(97)70314-7

    Article  PubMed  Google Scholar 

  26. Leonardi R, Muraglie S, Bennici O, Cavallini C, Spampinato C (2019) Three-dimensional analysis of mandibular functional units in adult patients with unilateral posterior crossbite: a cone beam study with the use of mirroring and surface-to-surface matching techniques. Angle Orthod 89:590–596. https://doi.org/10.2319/081718-607.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leonardi R, Sicurezza E, Cutrera A, Barbato E (2011) Early post-treatment changes of circumaxillary sutures in young patients treated with rapid maxillary expansion. Angle Orthod 81:36–41. https://doi.org/10.2319/050910-250.1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lux CJ (2004) Transverse development of the craniofacial skeleton and dentition between 7 and 15 years of age—a longitudinal postero-anterior cephalometric study. Eur J Orthod 26:31–42. https://doi.org/10.1093/ejo/26.1.31

    Article  PubMed  Google Scholar 

  29. Melsen B, Melsen F (1982) The postnatal development of the palatomaxillary region studied on human autopsy material. Am J Orthod 82:329–342. https://doi.org/10.1016/0002-9416(82)90467-5

    Article  PubMed  Google Scholar 

  30. Ong SC, Khambay BS, McDonald JP, Cross DL, Brocklebank LM, Ju X (2015) The novel use of three-dimensional surface models to quantify and visualise the immediate changes of the mid-facial skeleton following rapid maxillary expansion. Surgeon 13:132–138. https://doi.org/10.1016/j.surge.2013.10.012

    Article  PubMed  Google Scholar 

  31. Paredes N, Colak O, Sfogliano L, Elkenawy I, Fijany L, Fraser A, Zhang B, Moon W (2020) Differential assessment of skeletal, alveolar, and dental components induced by microimplant-supported midfacial skeletal expander (MSE), utilizing novel angular measurements from the fulcrum. Prog Orthod 21:18. https://doi.org/10.1186/s40510-020-00320-w

    Article  PubMed  PubMed Central  Google Scholar 

  32. Priyadarshini J, Mahesh CM, Chandrashekar BS, Sundara A, Arun AV, Reddy VP (2017) Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion—a finite element method study. Prog Orthod 18:17. https://doi.org/10.1186/s40510-017-0172-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Proffit WR, Turvey TA, Phillips C (1996) Orthognathic surgery: a hierarchy of stability. Int J Adult Orthodon Orthognath Surg 11:191–204

    PubMed  Google Scholar 

  34. Resnick CM, Daniels KM, Vlahos M (2018) Does Andrews facial analysis predict esthetic sagittal maxillary position? Oral Surg Oral Med Oral Pathol Oral Radiol 125:376–381. https://doi.org/10.1016/j.oooo.2018.01.012

    Article  PubMed  Google Scholar 

  35. Seong E‑H, Choi S‑H, Kim H‑J, Yu H‑S, Park Y‑C, Lee K‑J (2018) Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis. Korean J Orthod 48:81. https://doi.org/10.4041/kjod.2018.48.2.81

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shetty V, Caridad J, Caputo AA, Chaconas SJ (1994) Biomechanical rationale for surgical-orthodontic expansion of the adult maxilla. J Oral Maxillofac Surg 52:742–749. https://doi.org/10.1016/0278-2391(94)90492-8

    Article  PubMed  Google Scholar 

  37. da Silva Filho OG, do Prado Montes LA, Torelly LF (1995) Rapid maxillary expansion in the deciduous and mixed dentition evaluated through posteroanterior cephalometric analysis. Am J Orthod Dentofacial Orthop 107:268–275. https://doi.org/10.1016/S0889-5406(95)70142-7

    Article  PubMed  Google Scholar 

  38. Starnbach H, Bayne D, Cleall J, Subtelny JD (1966) Facioskeletal and dental changes resulting from rapid maxillary expansion. Angle Orthod 36:152–164. https://doi.org/10.1043/0003-3219(1966)036〈0152:FADCRF〉2.0.CO;2

    PubMed  Google Scholar 

  39. Stepanko LS, Lagravère MO (2016) Sphenoid bone changes in rapid maxillary expansion assessed with cone-beam computed tomography. Korean J Orthod 46:269. https://doi.org/10.4041/kjod.2016.46.5.269

    Article  PubMed  PubMed Central  Google Scholar 

  40. Timms DJ (1980) A study of basal movement with rapid maxillary expansion. Am J Orthod 77:500–507. https://doi.org/10.1016/0002-9416(80)90129-3

    Article  PubMed  Google Scholar 

  41. Wertz R, Dreskin M (1977) Midpalatal suture opening: a normative study. Am J Orthod 71:367–381. https://doi.org/10.1016/0002-9416(77)90241-X

    Article  PubMed  Google Scholar 

  42. Wikiversity (2021) Cohen’s d. https://en.m.wikiversity.org/wiki/Cohen%27s_d. Accessed 27 July 2021

  43. Woller JL, Kim KB, Behrents RG, Buschang PH (2014) An assessment of the maxilla after rapid maxillary expansion using cone beam computed tomography in growing children. Dental Press J Orthod 19:26–35. https://doi.org/10.1590/2176-9451.19.1.026-035.oar

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research for this study did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the submitted version.

Corresponding author

Correspondence to Ufuk Ok.

Ethics declarations

Conflict of interest

U. Ok, E. Kayalar and S. Sadry declare that they have no competing interests.

Ethical standards

Ethical approval for the study was received from the Istanbul Aydin University ethics committee (approval number 2021/356). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all of the individual participants or their family included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ok, U., Kayalar, E. & Sadry, S. Three-dimensional zygomatic changes after rapid maxillary expansion in growing patients. J Orofac Orthop 84, 147–156 (2023). https://doi.org/10.1007/s00056-021-00348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00348-5

Keywords

Schlüsselwörter

Navigation