Skip to main content
Log in

Insertion torque values and success rates for paramedian insertion of orthodontic mini-implants

A retrospective study

Insertionsdrehmoment und Erfolgsrate paramedian inserierter kieferorthopädischer Mini-Implantate

Eine retrospektive Studie

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

Orthodontic mini-implants (OMIs) are a reliable method to provide temporary orthodontic anchorage. We hypothesized that there is an optimal insertion torque (<10 Ncm) that can be used to ensure the success of self-drilling OMIs in the paramedian region.

Patients and methods

Included were 40 (26 females, 14 males) consecutive patients requiring palatal skeletal anchorage. Mean age was 17.3 years (range 11.0–44.6 years) for female patients and 15.7 years (range 10.6–36.9 years) for male patients. A total of 22 patients received a Beneslider according to Wilmes for the distalization of maxillary first molars, 10 patients received a Mesialslider for the mesialization of maxillary first molars, and 8 patients received a bone-borne rapid palatal expansion (RPE) appliance. Torque values of 10–15 Ncm were recorded in 46.3% of the OMIs and 15–20 Ncm in 35% of OMIs. OMIs that endured the orthodontic force applied for ≥6 months were considered as success.

Results

The overall success rate was 98.8%. No significant differences were found between insertion torque values with respect to the right and left sides, Jarabak’s ratio, facial axis, and Frankfort to mandibular plane angle. There were no significant differences in the OMIs insertion torques with regard to the different appliances. No association was found between insertion torque and vertical skeletal morphology.

Conclusion

With an overall success rate of 98.8%, the study hypothesis that greater insertion torque (>10 Ncm) will decrease the success rate and increase palatal OMI failure was rejected.

Zusammenfassung

Zielsetzung

Kieferorthopädische Mini-Implantate (OMIs) stellen eine verlässliche Methode dar, um eine temporäre kieferorthopädische Verankerung zu gewährleisten. Wir stellten die Hypothese auf, dass es für paramedian inserierte selbstbohrende OMIs ein optimales Insertionsdrehmoment (<10 Ncm) gibt.

Patienten und Methoden

Vierzig (26 w, 14 m) konsekutive Patienten, bei denen eine skelettale Verankerung im Gaumen erforderlich war, wurden in die Studie aufgenommen. Das Durchschnittsalter lag bei 17,3 (11,0–44,6) Jahren für die weiblichen bzw. 15,7 (10,6–36,9) für die männlichen Patienten. Insgesamt 22 Patienten erhielten einen Beneslider nach Wilmes zur Distalisation der ersten Oberkiefermolaren, 10 erhielten einen Mesialslider zur Mesialisation der ersten Oberkiefermolaren und 8 eine knöchern verankerte Apparatur zur forcierten Gaumennahterweiterung (GNE). Bei 46,3% der OMIs wurden Drehmomente von 10–15 Ncm registriert und bei 35% Werte von 15–20 Ncm. Als Erfolg wurden die OMIs gewertet, die der für ≥6 Monate applizierten kieferorthopädischen Kraft standhielten.

Ergebnisse

Insgesamt lag die Erfolgsquote bei 98,6%. Er ergaben sich keine statistisch signifikanten Unterschiede zwischen den Drehmomenten in Bezug auf den Jarabak-Index, den Gesichtsindex oder den FMPA (Winkel zwischen Frankfurter Horizontalen und Mandibularebene, FH-MP), auch nicht zwischen den beiden Seiten. Es ließen sich keine signifikanten Unterschiede zwischen OMI-Drehmoment-Werten im Hinblick auf die verschiedenen Apparaturen feststellen. Zwischen Insertionsdrehmoment und vertikaler skelettaler Morphologie fand sich ebenfalls kein Zusammenhang.

Schlussfolgerung

Bei einer Erfolgsquote von insgesamt 98,8% wurde die Hypothese, dass höhere Drehmomente bei der Insertion(>10 Ncm) die Erfolgsrate verringern und die Versagensquote palatinaler OMIs erhöhen, verworfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  1. Baumgaertel S (2014) Temporary skeletal anchorage devices: the case for miniscrews. Am J Orthod Dentofacial Orthop 145:560

    Google Scholar 

  2. Bernhart T, Vollgruber A, Gahleitner A, Dortbudak O, Haas R (2000) Alternative to the median region of the palate for placement of an orthodontic implant. Clin Oral Implants Res 11:595–601

    PubMed Central  Google Scholar 

  3. Cehreli S, Arman-Ozcirpici A (2012) Primary stability and histomorphometric bone-implant contact of self-drilling and self-tapping orthodontic microimplants. Am J Orthod Dentofacial Orthop 141:187–195

    PubMed Central  Google Scholar 

  4. Chaddad K, Ferreira AF, Geurs N, Reddy MS (2008) Influence of surface characteristics on survival rates of mini-implants. Angle Orthod 78:107–113

    PubMed Central  Google Scholar 

  5. Dahlberg G (1940) Statistical methods for medical and biological students. Interscience Publications, New York

    Google Scholar 

  6. Di Leonardo B, Ludwig B, Glasl B, Hourfar J, Mura R (2016) BRÖLEX—Eine rein knochengetragene Expansionsapparatur. Vorstellung und erste klinische Erfahrungen. Kieferorthopädie 30:149–152

    Google Scholar 

  7. Horner KA, Behrents RG, Kim KB, Buschang PH (2012) Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofacial Orthop 142:170–178

    PubMed Central  Google Scholar 

  8. Hosein YK, Dixon SJ, Rizkalla AS, Tassi A (2017) A comparison of the mechanical measures used for assessing orthodontic mini-implant stability. Implant Dent 26:225–231

    PubMed Central  Google Scholar 

  9. Hourfar J, Ludwig B, Bister D, Braun A, Kanavakis G (2015) The most distal palatal ruga for placement of orthodontic mini-implants. Eur J Orthod 37:373–378

    PubMed Central  Google Scholar 

  10. Hourfar J, Kanavakis G, Bister D, Schätzle M, Awad L, Nienkemper M, Goldbecher C, Ludwig B (2015) Three dimensional anatomical exploration of the anterior hard palate at the level of the third ruga for the placement of mini-implants - a cone-beam CT study. Eur J Orthod 37:589–595

    Google Scholar 

  11. Hourfar J, Bister D, Lux CJ, Al-Tamimi B, Ludwig B (2017) Anatomic landmarks and availability of bone for placement of orthodontic mini-implants for normal and short maxillary body lengths. Am J Orthod Dentofacial Orthop 151:878–886

    Google Scholar 

  12. Karagkiolidou A, Ludwig B, Pazera P, Gkantidis N, Pandis N, Katsaros C (2013) Survival of palatal miniscrews used for orthodontic appliance anchorage: a retrospective cohort study. Am J Orthod Dentofacial Orthop 143:767–772

    Google Scholar 

  13. Kim YH, Yang SM, Kim S, Lee JY, Kim KE, Gianelly AA, Kyung SH (2010) Midpalatal miniscrews for orthodontic anchorage: factors affecting clinical success. Am J Orthod Dentofacial Orthop 137:66–72

    Google Scholar 

  14. Lim HJ, Eun CS, Cho JH, Lee KH, Hwang HS (2009) Factors associated with initial stability of miniscrews for orthodontic treatment. Am J Orthod Dentofacial Orthop 136:236–242

    Google Scholar 

  15. Liou EJ, Pai BC, Lin JC (2004) Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 126:42–47

    Google Scholar 

  16. Manni A, Cozzani M, Tamborrino F, De Rinaldis S, Menini A (2011) Factors influencing the stability of miniscrews. A retrospective study on 300 miniscrews. Eur J Orthod 33:388–395

    Google Scholar 

  17. Maya RR, Pinzan-Vercelino CR, Gurgel JA (2016) Effect of vertical placement angle on the insertion torque of mini-implants in human alveolar bone. Dental Press J Orthod 21:47–52

    PubMed Central  Google Scholar 

  18. Melo AC, Andrighetto AR, Hirt SD, Bongiolo AL, Silva SU, Silva MA (2016) Risk factors associated with the failure of miniscrews—a ten-year cross sectional study. Braz Oral Res 30:e124

    Google Scholar 

  19. Meursinge Reynders RA, Ronchi L, Ladu L, van Etten-Jamaludin F, Bipat S (2012) Insertion torque and success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop 142:596–614

    PubMed Central  Google Scholar 

  20. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T (2003) Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 124:373–378

    Google Scholar 

  21. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N (2006) Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 17:109–114

    Google Scholar 

  22. Motoyoshi M, Inaba M, Ono A, Ueno S, Shimizu N (2009) The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg 38:13–18

    Google Scholar 

  23. Nguyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ (2018) The influence of miniscrew insertion torque. Eur J Orthod 40:37-44

    Google Scholar 

  24. Nienkemper M, Pauls A, Ludwig B, Drescher D (2015) Stability of paramedian inserted palatal mini-implants at the initial healing period: a controlled clinical study. Clin Oral Implants Res 26:870–875

    Google Scholar 

  25. Nienkemper M, Wilmes B, Pauls A, Drescher D (2012) Multipurpose use of orthodontic mini-implants to achieve different treatment goals. J Orofac Orthop 73:467–476

    Google Scholar 

  26. Nienkemper M, Wilmes B, Pauls A, Drescher D (2014) Mini-implant stability at the initial healing period: a clinical pilot study. Angle Orthod 84:127–133

    Google Scholar 

  27. Nienkemper M, Handschel J, Drescher D (2014) Systematic review of mini-implant displacement under orthodontic loading. Int J Oral Sci 6:1–6

    Google Scholar 

  28. Papadopoulos MA, Tarawneh F (2007) The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:21

    Google Scholar 

  29. Papadopoulos MA, Papageorgiou SN, Zogakis IP (2011) Clinical effectiveness of orthodontic miniscrew implants: a meta-analysis. J Dent Res 90:969–976

    PubMed Central  Google Scholar 

  30. Papageorgiou SN, Zogakis IP, Papadopoulos MA (2012) Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop 142:577–595

    Google Scholar 

  31. Sander C, Huffmeier S, Sander FM, Sander FG (2006) Initial results regarding force exertion during rapid maxillary expansion in children. J Orofac Orthop 67:19–26

    Google Scholar 

  32. Suzuki EY, Suzuki B (2011) Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 139:669–678

    Google Scholar 

  33. Suzuki M, Deguchi T, Watanabe H, Seiryu M, Iikubo M, Sasano T, Fujiyama K, Takano-Yamamoto T (2013) Evaluation of optimal length and insertion torque for miniscrews. Am J Orthod Dentofacial Orthop 144:251–259

    Google Scholar 

  34. Tepedino M, Masedu F, Chimenti C (2017) Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews—an in vitro study. Head Face Med 13:17–143

    Google Scholar 

  35. Topouzelis N, Tsaousoglou P (2012) Clinical factors correlated with the success rate of miniscrews in orthodontic treatment. Int J Oral Sci 4:38–44

    PubMed Central  Google Scholar 

  36. Tsai CC, Chang HP, Pan CY, Chou ST, Tseng YC (2016) A prospective study of factors associated with orthodontic mini-implant survival. J Oral Sci 58:515–521

    Google Scholar 

  37. Wilmes B, Ludwig B, Vasudavan S, Nienkemper M, Drescher D (2016) The T‑zone: median vs. paramedian insertion of palatal mini-implants. J Clin Orthod 50:543–551

    Google Scholar 

  38. Wilmes B, Nienkemper M, Drescher D (2010) Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: the hybrid hyrax. World J Orthod 11:323–330

    PubMed Central  Google Scholar 

  39. Wilmes B, Su YY, Drescher D (2008) Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod 78:1065–1070

    Google Scholar 

  40. Wilmes B, Nienkemper M, Nanda R, Lubberink G, Drescher D (2013) Palatally anchored maxillary molar mesialization using the mesialslider. J Clin Orthod 47:172–179

    Google Scholar 

  41. Wilmes B, Drescher D (2010) Application and effectiveness of the Beneslider: a device to move molars distally. World J Orthod 11:331–340

    Google Scholar 

  42. Wilmes B, Ottenstreuer S, Su YY, Drescher D (2008) Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop 69:42–50

    Google Scholar 

  43. Winsauer H, Vlachojannis J, Winsauer C, Ludwig B, Walter A (2013) A bone-borne appliance for rapid maxillary expansion. J Clin Orthod 47:375–381

    Google Scholar 

  44. Winsauer H, Vlachojannis C, Bumann A, Vlachojannis J, Chrubasik S (2014) Paramedian vertical palatal bone height for mini-implant insertion: a systematic review. Eur J Orthod 36:541–549

    Google Scholar 

  45. Yamaguchi M, Inami T, Ito K, Kasai K, Tanimoto Y (2012) Mini-implants in the anchorage armamentarium: new paradigms in the orthodontics. Int J Biomater 2012:394121

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hourfar.

Ethics declarations

Conflict of interest

B. Di Leonardo, B. Ludwig, J.A. Lisson, L. Contardo, R. Mura and J. Hourfar declare that they have no competing interests.

Ethical standards

Ethical approval for this retrospective study was obtained from the institutional review board. For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Leonardo, B., Ludwig, B., Lisson, J.A. et al. Insertion torque values and success rates for paramedian insertion of orthodontic mini-implants. J Orofac Orthop 79, 109–115 (2018). https://doi.org/10.1007/s00056-018-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-018-0120-x

Keywords

Schlüsselwörter

Navigation