Skip to main content
Log in

Influence of various polishing methods on pulp temperature

An in vitro study

Einfluss verschiedener Poliermethoden auf die Pulpatemperatur

Eine In-vitro-Studie

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

After orthodontic debonding, adhesive removal can lead to rises in pulp temperature, causing histological changes or pulp necrosis. The objective of this study was to measure increases in pulp temperature during adhesive removal using different instruments and various cooling procedures.

Materials and methods

A thermoelement was introduced into the pulp chamber of 10 human incisors. The teeth were immersed in a 36°C water bath up to the cementoenamel junction. Two carbide burs, one polishing disk and two rubber points were used for polishing. All measurements were taken over a 10 s period by a single investigator, under slight pressure and with constant motion. Three cooling procedures were examined: no cooling, air cooling and water cooling. Pulp temperatures were measured before polishing and after 10 s of polishing.

Results

Without cooling, the two rubber points revealed clinically relevant temperature increases of 6.1°C and 12.4°C. Cooling with air and with water reduced pulp temperature in conjunction with all polishing methods. Air cooling was most efficient, except in combination with the polishing disk.

Conclusion

Under these study conditions, carbide burs and polishing disks can be used safely and without risk to the pulp, even without cooling. On the other hand, rubber points cause a marked increase in pulp temperature when used without cooling.

Zusammenfassung

Ziel

Pulpatemperaturanstiege während der Adhäsiventfernung nach dem kieferorthopädischen Debonding könnten zu histologischen Veränderungen oder zum Absterben der Pulpa führen. Ziel der vorliegenden Untersuchung war die Bestimmung der Pulpatemperaturanstiege während der Adhäsiventfernung mit verschiedenen Instrumenten und unterschiedlicher Kühlung.

Material und Methodik

Ein Thermoelement wurde in die Pulpakammer von 10 humanen Unterkieferincisivi eingeführt. Die Zähne wurden bis zur Schmelzzementgrenze in ein Wasserbad mit einer Temperatur von 36°C eingetaucht. Zur Polierung wurden 2 Karbidbohrer, 1 Polierscheibe und 2 Gummispitzen verwendet. Alle Messungen wurden durch einen Behandler unter leichtem Druck und konstanter Bewegung während 10 s durchgeführt. Untersucht wurden 3 Kühlmethoden: keine Kühlung, Kühlung mit Luft und Kühlung mit Wasser. Die Pulpatemperaturen wurden vor Beginn und nach 10 s Polierung aufgezeichnet.

Ergebnisse

Die beiden Gummispitzen zeigten ohne Kühlung klinisch relevante Temperaturanstiege von 6,1°C und 12,4°C. Kühlung mit Luft oder mit Wasser resultierte in einer Reduktion der Pulpatemperatur für alle Poliermethoden. Außer in der Kombination mit der Polierscheibe war Luft die effizienteste Kühlmethode.

Schlussfolgerung

Unter den Anwendungsbedingungen der vorliegenden Studie können die Karbidbohrer und die Polierscheibe selbst ohne Kühlung sicher und ohne Pulparisiko verwendet werden. Gummispitzen hingegen führten ohne Kühlung zu einem starken intrapulpalen Temperaturanstieg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bagis B, Bagis Y, Ertas E, Ustaomer S (2008) Comparison of the heat generation of light curing units. J Contemp Dent Pract 9:65–72

    PubMed  Google Scholar 

  2. Banes J, Hammond H (1978) Surface temperatures of vital and nonvital teeth in humans. J Endod 4:106–109

    Article  PubMed  Google Scholar 

  3. Baroudi K, Silikas N, Watts DC (2009) In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 19:48–54

    Article  PubMed  Google Scholar 

  4. Baysal A, Uysal T, Usumez S (2007) Temperature rise in the pulp chamber during different stripping procedures. Angle Orthod 77:478–482

    Article  PubMed  Google Scholar 

  5. Bicakci A, Kocoglu-Altan B, Celik-Ozenci C et al (2010) Histopathologic evaluation of pulpal tissue response to various adhesive cleanup techniques. Am J Orthod Dentofacial Orthop 138:12.e1–12.e7

    Article  PubMed  Google Scholar 

  6. Brown A, Goldberg M (1966) Surface temperature and temperature gradients of human teeth in situ. Arch Oral Biol 11:973–982

    Article  PubMed  Google Scholar 

  7. Carrasco TG, Carrasco-Guerisoli LD, Fröner IC (2008) In vitro study of the pulp chamber temperature rise during light-activated bleaching. J Appl Oral Sci 16:355–359

    Article  PubMed  Google Scholar 

  8. Cavalcanti BN, Lage-marques JL, Rode SM (2003) Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent 90:447–451

    Article  PubMed  Google Scholar 

  9. Cavalcanti BN, Otani C, Rode SM (2002) High-speed cavity preparation techniques with different water flows. J Prosthet Dent 87:158–161

    Article  PubMed  Google Scholar 

  10. Chiodera G, Gastaldi G, Millar BJ (2009) Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 25:321–325

    Article  PubMed  Google Scholar 

  11. Daronch M, Rueggeberg FA, Hall G, De Goes ME (2007) Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 23:1283–1288

    Article  PubMed  Google Scholar 

  12. De Magalhães M, Ferreira R, Grossi P, De Andrade R (2008) Measurement of thermophysical properties of human dentin: Effect of open porosity. J Dent 36:588–594

    Article  Google Scholar 

  13. Durey K, Santini A, Miletic V (2008) Pulp chamber temperature rise during curing of resin-based composites with different light-curing units. Prim Dent Care 15:33–38

    Article  PubMed  Google Scholar 

  14. Eldeniz AU, Usumez A, Usumez S, Ozturk N (2005) Pulpal temperature rise during light-activated bleaching. J Biomed Mater Res B Appl Biomater 72:254–259

    PubMed  Google Scholar 

  15. El-Hadary M, El-Massry N, Shehata FI, El-Sharkawy M (1975) Thickness of enamel and dentin in different locations of the crown portion in premolars and their relation to conservative treatment. Egypt Dent J 21:29–36

    Google Scholar 

  16. Firoozmand L, Faria R, Araujo MA et al (2008) Temperature rise in cavities prepared by high and low torque handpieces and Er:YAG laser. Br Dent J 12:205

    Google Scholar 

  17. Gängler P (1976) Das Verhalten der Blutzirkulation der Pulpa. Zahn Mund Kieferheilkd 64:480–486

    Google Scholar 

  18. Goodis HE, Schein B, Stauffer P (1988) Temperature changes measured in vivo at the dentinoenamel junction and pulpodentin junction during cavity preparation in the Macaca fascicularis monkey. J Endod 14:336–339

    Article  PubMed  Google Scholar 

  19. Guiraldo RD, Consani S, Sinhoreti MA et al (2009) Thermal variations in the pulp chamber associated with composite insertion techniques and light-curing methods. J Contemp Dent Pract 10:17–24

    PubMed  Google Scholar 

  20. Jonke E, Weiland F, Freudenthaler JW, Bantleon HP (2006) Heat generated by residual adhesive removal after debonding of brackets. World J Orthod 7:357–360

    PubMed  Google Scholar 

  21. Kabbach W, Zezell DM, Pereira TM et al (2008) A thermal investigation of dental bleaching in vitro. Photomed Laser Surg 26:489–493

    Article  PubMed  Google Scholar 

  22. Kodonas K, Cogos C, Tziafas D (2009) Effect of simulated pulpal microcirculation on intrapulpal temperature changes following application of heat on tooth surfaces. Int Endod J 42:247–252

    Article  PubMed  Google Scholar 

  23. Langeland K, Langeland LK (1965) Pulp reactions to crown preparation, impression, temporary crown fixation and permanent cementation. J Prosthet Dent 15:129–143

    Article  PubMed  Google Scholar 

  24. MalkoÇ S, Uysal T, Üsümez S, Işman E, Baysal A (2010) In-vitro assessment of temperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofacial 137:379–383

    Article  Google Scholar 

  25. Martins GR, Cavalcanti BN, Rode SM (2006) Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 96:328–331

    Article  PubMed  Google Scholar 

  26. Matthew B, Andrew D (1995) Microvascular architecture and exchange in teeth. Microcirculation 2:305–313

    Article  Google Scholar 

  27. Mizrahi E, Cleaton-Jones P, Landy C (1996) Tooth surface and pulp chamber temperatures developed during electrothermal bonding. Am J Orthod Dentofacial 109:506–514

    Article  Google Scholar 

  28. Meyer M (1993) Pulpal blood flow: use of radio-labeled microspheres. Int Endod J 26:6–7

    Article  PubMed  Google Scholar 

  29. Mollica FB, Camargo FP, Zamboni SC et al (2008) Pulpal temperature increase with high-speed handpiece, Er: YAG laser and ultrasound tips. J Appl Oral Sci 16:209–213

    Article  PubMed  Google Scholar 

  30. Nyborg H, Brannström M (1968) Pulp reaction to heat. J Prosthet Dent 19:605–612

    Article  PubMed  Google Scholar 

  31. Oztürk B, Usümez A, Oztürk AN, Ozer F (2004) In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 91:436–440

    Article  PubMed  Google Scholar 

  32. Peyton F (1955) Temperature rise in teeth developed by rotating instruments. J Am Dent 50:629–632

    Google Scholar 

  33. Pohto M, Scheinin A (1958) Microscopic observations on living dental pulp. II. The effect of thermal irritants on the circulation of the pulp in the lower rat incisor. Acta Odontol Scand 16:315–327

    Article  Google Scholar 

  34. Postle HH, Lekowitz W, McConnel D (1959) Pulp response to heat. J Dent Res 37:740

    Google Scholar 

  35. Robinson HB, Lefkowitz W (1962) Operative dentistry and the pulp. J Prosthet Dent 12:985–1001

    Article  Google Scholar 

  36. Silva PC, De Fatima Zanirato Lizarelli R, Moriyama LT et al (2005) Temperature analysis during bonding of brackets using LED or halogen light base units. Photomed Laser Surg 23:41–46

    Article  PubMed  Google Scholar 

  37. Stoops L, Scott D (1976) Measurement of tooth temperature as a means of determining pulp vitality. J Endod 5:141–145

    Article  Google Scholar 

  38. Sulieman M, Addy M, Rees JS (2005) Surface and intra-pulpal temperature rises during tooth bleaching: an in vitro study. Br Dent J 199:37–40

    Article  PubMed  Google Scholar 

  39. Takla PM, Shivapuja PK (1995) Pulpal response in electrothermal debonding. Am J Orthod Dentofacial Orthop 108:623–629

    Article  PubMed  Google Scholar 

  40. Torres CR, Caneppele TM, Arcas FC, Borges AB (2008) In vitro assessment of pulp chamber temperature of different teeth submitted to dental bleaching associated with LED/laser and halogen. Gen Dent 56:481–486

    PubMed  Google Scholar 

  41. Uysal T, Unverdi Eldeniz A, Usumez S, Usumez A (2005) Thermal changes in the pulp different adhesive clean-up procedures. Angle Orthod 75:220–225

    PubMed  Google Scholar 

  42. Uzel A, Buyukyilmaz T, Kayalioglu M, Uzel I (2006) Temperature rise during orthodontic bonding with various light-curing units—an in vitro study. Angle Orthod 76:330–334

    PubMed  Google Scholar 

  43. Vukovich M, Wood D, Daley T (1991) Heat generated by grinding during removal of ceramic brackets. Am J Orthod Dentofacial Orthop 99:505–512

    Article  PubMed  Google Scholar 

  44. Willis H, Worner H (1940) Heat in cavity preparation. Aust Dent J 44:62–65

    Google Scholar 

  45. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Med Oral Pathol 19:515–530

    Article  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brauchli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mank, S., Steineck, M. & Brauchli, L. Influence of various polishing methods on pulp temperature. J Orofac Orthop 72, 348–357 (2011). https://doi.org/10.1007/s00056-011-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-011-0039-y

Keywords

Schlüsselwörter

Navigation