Skip to main content
Log in

Chemical diversity and potential biological functions of the pygidial gland secretions in two species of Neotropical dung roller beetles

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Dung roller beetles of the genus Canthon (Coleoptera: Scarabaeinae) emit an odorous secretion from a pair of pygidial glands. To investigate the chemical composition of these secretions, we used stir bar sorptive extraction (SBSE), coupled with gas chromatography–mass spectrometry (GC–MS) for analysis of extracts of pygidial gland secretions secreted by the dung roller beetles Canthon femoralis femoralis and Canthon cyanellus cyanellus. Chemical analyses of volatiles collected from pygidial gland secretions comprise a great diversity of the functional groups. Chemical profile comparisons showed high intra- and interspecific variability. The pygidial gland secretion of Canthon f. femoralis was dominated by sesquiterpene hydrocarbons, whereas the profile of Canthon c. cyanellus was dominated by carboxylic acids. The different pygidial secretions have a high diversity of chemical compounds suggesting a multifunctional nature involving some key functions in the biology. We discuss the biological potential of these compounds found in the pygidial glands of each species with respect to their ecological and behavioral relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Aliabadi A (2001) Identification of the defensive secretions of three species of dung beetles of the genus Canthon and sequestration of fecal compounds by Canthon imitator. Dissertation, University of Illinois, pp 194

  • Attygalle AB, Meinwald J, Eisner T (1992) Defensive secretion of a carabid beetle, Helluomorphoides clairvillei. J Chem Ecol 18:489–498

    CAS  PubMed  Google Scholar 

  • Attygalle AB, Wu X, Ruzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddison DR, Will KW (2004) Defensive chemicals of two species of Trachypachus motschulski. J Chem Ecol 30:577–588

    CAS  PubMed  Google Scholar 

  • Balestrazzi E, Dazzini MLV, de Bernardi M, Vidari G, Vita-Finzi P, Mellerio G (1985) Morphological and chemical studies on the pygidial defense glands of some Carabidae (Coleoptera). Naturwissenschaften 72:482–484

    Google Scholar 

  • Baltussen E, David F, Sandra P, Janssen HG (1998) Sorption tubes packed with polydimethylsiloxane: a new and promising technique for the preconcentration of volatiles and semivolatiles from air and gaseous samples. J High Res Chromatog 21:332–340

    CAS  Google Scholar 

  • Baltussen E, David F, Sandra P, Cramers C (1999) On the performance and inertness of different materials used for the enrichment of sulfur compounds from air and gaseous samples. J Chromatogr A 864:345–350

    CAS  PubMed  Google Scholar 

  • Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373:3–22

    CAS  PubMed  Google Scholar 

  • Bellés X, Favila ME (1983) Protection chimique du nid chez Canthon cyanellus cyanellus LeConte (Col. Scarabaeidae). Bull Soc Entomol Fr 88:602–607

    Google Scholar 

  • Betz O (1999) A behavioral inventory of adult Stenus species (Coleoptera: Staphylinidae). J Nat Hist 33:1691–1712

    Google Scholar 

  • Blasco C, Fernández M, Pico Y, Font G (2004) Comparison of solid-phase microextraction and stir bar sorptive extraction for determining six organophosphorus insecticides in honey by liquid chromatography–mass spectrometry. J Chromatogr A 1030:77–85

    CAS  PubMed  Google Scholar 

  • Blum MS (1981) Chemical defenses of arthropods. Academic Press, New York

    Google Scholar 

  • Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374

    CAS  PubMed  Google Scholar 

  • Bonacci T, Brandmayr P, Zetto T, Perrotta ID, Guarino S, Peri E, Colazza S (2011) Volatile compounds released by disturbed and undisturbed adults of Anchomenus dorsalis (Coleoptera, Carabidae, Platynini) and structure of the pygidial gland. ZooKeys 81:13–25

    PubMed  Google Scholar 

  • Borgo CS, Cabrera A, Hernández JV (2013) Respuestas electroantenográficas de las hormigas Acromyrmex landolti y Odontomachus bauri a olores de sus glándulas cefálicas. Entomotropica 28:39–49

    Google Scholar 

  • Bouchard P, Hsiung CC, Yaylayan VA (1997) Chemical analysis of defensive secretion of Sipylodea sipylus and their potential use as repellents against rats. J Chem Ecol 23:2049–2057

    CAS  Google Scholar 

  • Brandmayr P, Bonacci T, Giglio A, Talarico FF, Brandmayr TZ (1983) The evolution of defense mechanisms in carabid beetles: a review. In: Casellato S, Burighel P, Minelli A (eds) Life and time: the evolution of life and its history. Cleup, Padova, pp 25–43

    Google Scholar 

  • Brophy JJ, Cavill GWK, McDonald JA, Nelson D, Plant WD (1982) Volatile constituents of two species of Australian formicine ants of the genera Notoncus and Polyrhachis. Insect Biochem 12:215–219

    CAS  Google Scholar 

  • Burger BV, Petersen WGB (2002) Semiochemicals of the Scarabaeinae: VI. Identification of EAD-active constituents of abdominal secretion of male dung beetle Kheper nigroaeneus. J Chem Ecol 28:501–513

    CAS  PubMed  Google Scholar 

  • Burger BV, Munro Z, Roth M, Spies HSC, Truter V, Tribe GD, Crewe RM (1983) Composition of the heterogenous sex attracting secretion of the dung beetle, Kheper lamarcki. Z Naturforsch C 38:848–855

    Google Scholar 

  • Burger BV, Petersen WGB, Weber WG, Munro ZM (2002) Semiochemicals of the Scarabaeinae. VII: identification and synthesis of EAD-active constituents of abdominal sex attracting secretion of the male dung beetle. Kheper subaeneus. J Chem Ecol 28:2527–2539

    CAS  Google Scholar 

  • Burger BV, Petersen WGB, Ewig BT, Neuhaus J, Tribe GD, Spies HSC, Burger WJG (2008) Semiochemicals of the Scarabaeinae—VIII. Identification of active constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper bonellil, using gas chromatography with flame ionization and electroantennographic detection in parallel. J Chromatogr 1186:245–253

    CAS  Google Scholar 

  • Cane JH, Michener CD (1983) Chemistry and function of mandibular gland products of bees of the genus Exoneura (Hymenoptera, Anthophoridae). J Chem Ecol 9:1525–1531

    CAS  PubMed  Google Scholar 

  • Carson C, Birkett MA, Logan JG, Mawa K, Pates HV, Pickett JA, Cameron MM (2010) Novel use of stir bar sorptive extraction (SBSE) as a tool for isolation of oviposition site attractants for gravid Culex quinquefasciatus. Bull Entomol Res 100:1–7

    CAS  PubMed  Google Scholar 

  • Chen J (2009) Repellency of an over-the-counter essential oil product in China against workers of red imported fire ants. J Agric Food Chem 57:618–622

    CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

  • Clarke KR, Gorley NR (2008) PRIMER 6 (User Manual/Tutorial) version 6.1.11 Primer-E Ltd Plymouth

  • Classen R, Dettner K (1983) Pygidial defensive titer and population structure of Agabus bipustulatus L. and Agabus paludosus F. (Coleoptera, Dytiscidae). J Chem Ecol 9:201–209

    CAS  PubMed  Google Scholar 

  • Cortez V, Favila ME, Verdú JR, Ortiz AJ (2012) Behavioral and antennal electrophysiological responses of a predator ant to the pygidial gland secretions of two species of Neotropical dung roller beetles. Chemoecology 22:29–38

    CAS  Google Scholar 

  • Dani FR, Cannoni S, Turillazzi S, Morgan ED (1996) Ant repellent effect of the sternal gland secretion of Polistes dominulus (Christ) and P. sulcifer (Zimmermann). (Hymenoptera: Vespidae). J Chem Ecol 22:37–48

    CAS  PubMed  Google Scholar 

  • Davidson B, Eisner T, Witz B, Meinwald J (1989) Defensive secretion of the carabid beetle Pasimachus subsulcatus. J Chem Ecol 15:1689–1697

    CAS  PubMed  Google Scholar 

  • Degenkolb T, Düring RA, Vilcinskas A (2011) Secondary metabolites released by the burying beetle Nicrophorus vespilloides: Chemical analyses and possible ecological functions. J Chem Ecol 37:724–735

    CAS  PubMed  Google Scholar 

  • Dettner K (1985) Ecological and phylogenetic significance of defensive compounds from pygidial glands of Hydradephaga (Coleoptera). P Acad Nat Sci Phila 137:156–171

    Google Scholar 

  • Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32:17–48

    CAS  Google Scholar 

  • Dettner K (1993) Defensive secretions and exocrine glands in free-living staphylinid beetles—their bearing on phylogeny (Coleoptera: Staphylinidae). Biochem Syst Ecol 21:143–162

    CAS  Google Scholar 

  • Dettner K, Beran A (2000) Chemical defense of the fetid smelling click beetle Agrypnus murinus (Coleoptera: Elateridae). Entomol Gen 25:27–32

    Google Scholar 

  • Dettner K, Reissenweber F (1991) The defensive secretion of Omaliinae and Proteininae (Coleoptera: Staphylinidae): its chemistry, biological and taxonomic significance. Biochem Syst Ecol 19:291–303

    CAS  Google Scholar 

  • Dettner K, Schwinger G (1980) Defensive substances from pygidial glands of water beetles. Biochem Syst Ecol 8:89–95

    CAS  Google Scholar 

  • Devi P, Wahidullah S, Rodrigues C, Souza LD (2010) The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar Drugs 8:1203–1212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickens JC, Jang EB, Light DM, Alford AR (1990) Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31

    CAS  Google Scholar 

  • Duffey SS, Blum MS, Fales HM, Evans SL, Roncadori RW, Tiemann DL, Nakagawa Y (1977) Benzoyl cyanide and mandelonitrile benzoate in the defensive secretion of millipedes. J Chem Ecol 3:101–113

    CAS  Google Scholar 

  • Eisner T, Hurst JJ, Meinwald J (1963) Defense mechanisms of arthropods. XI. The structure, function, and phenolic secretions of the glands of a chordeumoid millipede and a carabid beetle. Psyche 70:94–116

    CAS  Google Scholar 

  • Eisner T, Jones TH, Aneshansley DJ, Tschinkel WR, Silberglied RE, Meinwald J (1977) Chemistry of defensive secretion of bombardier beetles (Brachinini, Metriini, Ozaenini, Paussini). J Insect Physiol 23:1383–1386

    CAS  Google Scholar 

  • Eisner T, Aneshansley DJ, Eisner M, Attygalle AB, Alsop DW, Meinwald J (2000) Spray mechanism of the most primitive bombardier beetle (Metrius contractus). J Exp Biol 203:1265–1275

    CAS  PubMed  Google Scholar 

  • Eisner T, Aneshansley DJ, Yack J, Attygalle AB, Eisner M (2001) Spray mechanism of crepidogastrine bombardier beetles (Carabidae: Crepidogastrini). Chemoecology 11:209–219

    CAS  Google Scholar 

  • El-Sayed AM (2014) The pherobase: database of pheromones and semiochemicals. http://www.pherobase.com

  • Evans PH, Becerra JX, Venable DL, Bowers WS (2000) Chemical analysis of squirt-gun defense in Bursera and counter defense by Chrysomelid beetles. J Chem Ecol 26:745–754

    CAS  Google Scholar 

  • Favila ME (1993) Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera: Scarabaeidae): an experimental approach. Ethol Ecol Evol 5:319–328

    Google Scholar 

  • Favila ME (2001) Ecología química en escarabajos coprófagos y necrófagos de la subfamilia Scarabaeinae. In: Anaya AL, Espinosa FJ, Cruz R (eds) Relaciones químicas entre organismos: Aspectos básicos y perspectivas de su aplicación. Editorial Plaza y Valdés, SA de CV, pp 541–580

    Google Scholar 

  • Favila ME, Díaz A (1996) Canthon cyanellus cyanellus LeConte (Coleoptera: Scarabaeidae) makes a nest in the field with several brood balls. Coleopts Bull 50:52–60

    Google Scholar 

  • Favila ME, Ortiz-Domínguez M, Chamorro-Florescano I, Cortez V (2012) Comunicación Química y Comportamiento Reproductor de los Escarabajos Rodadores de Estiércol (Scarabaeinae: Scarabaeini): Aspectos Ecológicos y Evolutivos, y sus Posibles Aplicaciones. In: Rojas JC, Malo EA (eds) Temas Selectos en Ecología Química de Insectos. El Colegio de la Frontera Sur, México, pp 141–164

    Google Scholar 

  • Fonseca MG, Vidal DM, Zarbin PHG (2010) Male-produced sex pheromone of the cerambycid beetle Hedypathes betulinus: chemical identification and biological activity. J Chem Ecol 36:1132–1139

    CAS  PubMed  Google Scholar 

  • Fortunato A, Maile R, Turillazzi S, Morgan ED, Moneti G, Jones GR, Pieraccini G (2001) Defensive role of secretion of ectal mandibular glands of the wasp Polistes dominulus. J Chem Ecol 27:569–579

    CAS  PubMed  Google Scholar 

  • Francke W, Dettner K (2005) Chemical signalling in beetles. In: Schultz S (Ed) Chemistry of pheromones and other semiochemicals II. Top Curr Chem 85–166

  • Francke W, Bartels J, Meyer H, Schroder F, Kohnle U, Baader E, Vite JP (1995) Semiochemicals from bark beetles: new results, remarks, and reflections. J Chem Ecol 21:1043–1063

    CAS  PubMed  Google Scholar 

  • Fürstenau B, Rosell G, Guerrero A, Quero C (2012) Electrophysiological and behavioral responses of the black-banded oak borer, Coroebus florentinus, to conspecific and host-plant volatiles. J Chem Ecol 38:378–388

    PubMed  Google Scholar 

  • Gnanasunderam C, Young H, Hutchins R (1985) Defensive secretions of New Zealand tenebrionids: V. Presence of methyl ketones in Uloma tenebrionoides (Coleoptera: Tenebrionidae). J Chem Ecol 11:465–472

    CAS  PubMed  Google Scholar 

  • Goddard PA, McCue KA (2001) Phenolic compounds. In: Block SS (ed) Disinfection, sterilization, and preservation, 5th edn. Lippincott, Williams and Wilkins, Philadelphia, USA pp 255–282

  • Guérin-Méneville FE (1838) Première division, Crustacés, Arachnides et Insectes. In: Duperrey LJ (ed) Voyage autour du monde, exécuté par Ordre du Roi sur la corvette de La Majesté, La Coquille, pendant les années 1822, 1823, 1824 et 1825, Zool. par M. Lesson, Arthus Bertrand, Paris, pp 180–193

  • Haberer W, Schmitt T, Peschke K, Schreier P, Müller JK (2008) Ethyl 4-methyl heptanoate: a male-produced pheromone of Nicrophorus vespilloides. J Chem Ecol 34:94–98

    CAS  PubMed  Google Scholar 

  • Halffter G (1997) Subsocial behavior in Scarabaeinae beetles. In: Choe JC, Crespi BJ (eds) The Evolution of social behavior in insects and arachnids. University Press, Cambridge, pp 237–259

    Google Scholar 

  • Halffter G, Cortez V, Gómez EJ, Rueda CM, Ciares W, Verdú JR (2013) A review of subsocial behavior in Scarabaeinae rollers (Insecta: Coleoptera): an evolutionary approach. M3M, SEA-INECOL. Zaragoza, España p 237

  • Hayashi N, Komae H (1980) Components of the ant secretions. Biochem Syst Ecol 8:293–295

    CAS  Google Scholar 

  • Hazan R, Levine A, Abeliovich H (2004) Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microb 70:4449–4457

    CAS  Google Scholar 

  • Henzell RF, Lowe MD (1970) Sex attractant of the grass grub beetle. Science 168:1005–1006

    CAS  PubMed  Google Scholar 

  • Holliday AE, Holliday NJ, Mattingly TM, Naccarato KM (2012) Defensive secretions of the carabid beetle Chlaenius cordicollis: chemical components and their geographic patterns of variation. J Chem Ecol 38:278–286

    CAS  PubMed  Google Scholar 

  • Howard DF, Blum MS, Jones TH, Phillips DW (1982) Defensive adaptations of eggs and adults of Gastrophysa cyanea (Coleoptera: Chrysomelidae). J Chem Ecol 8:453–462

    CAS  PubMed  Google Scholar 

  • Hyötyläinen T, Riekkola ML (2008) Sorbent-and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: a review. Anal Chim Acta 614:27–37

    PubMed  Google Scholar 

  • Jacobson M, Lilly CE, Harding C (1968) Sex attractant of sugar beet wireworm: identification and biological activity. Science 159:208–210

    CAS  PubMed  Google Scholar 

  • Kanehisa K, Tsumuki H (1996) Pygidial secretion of Stenus rove beetles (Coleoptera: Staphilinidae). Bull Res Inst Bioresour, Okayama University 4:25–31

    Google Scholar 

  • Kelley KC, Schilling AB (1998) Quantitative variation in chemical defense within and among subgenera of Cicindela. J Chem Ecol 24:451–472

    CAS  Google Scholar 

  • Keville R, Kannowski PB (1975) Sexual excitation by pheromones of the confused flour beetle. J Insect Physiol 21:81–84

    CAS  PubMed  Google Scholar 

  • Kirejtshuk AG, James DG, Heffer R (1997) Description and biology of a new species of Cybocephalus Erichson (Coleoptera: Nitidulidae), a predator of Australian citrus whitefly. Aust J Entomol 36:81–86

    Google Scholar 

  • Kubo A, Lunde CS, Kubo I (1996) Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli. Antimicrob Agents Ch 40:1438–1441

    CAS  Google Scholar 

  • Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) Recent developments and applications of stir bar sorptive extraction. J Sep Sci 32:813–824

    CAS  PubMed  Google Scholar 

  • LaPointe SL, Hunter WB, Alessandro RT (2004) Cuticular hydrocarbons on elytra of the Diaprepes root weevil Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae). Agric Forest Entomol 6:251–257

    Google Scholar 

  • Larsen AG, Knochel S (1997) Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. J Appl Microbiol 83:11–119

    Google Scholar 

  • Laurent P, Braekman JC, Daloze D (2005) Insect chemical defense. Top Curr Chem 240:166–229

    Google Scholar 

  • Lusebrink I, Burkhardt D, Gedig T, Dettner K, Seifert K, Mosandl A (2007) Intrageneric differences in the four stereoisomers of stenusine in the rove beetle genus, Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 94:143–147

    CAS  PubMed  Google Scholar 

  • Lusebrink I, Dettner K, Seifert K (2008) Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 95:751–755

    CAS  PubMed  Google Scholar 

  • Magiatis P, Skaltsounis AL, Chinou I, Haroutounian S (2002) Chemical composition and in vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z Naturforsch 57:287–290

    CAS  Google Scholar 

  • Mayrink W, Pereira CA, Barbosa R, Barros M, Pinto TM, Monteiro H, da Costa CA, Peixoto VPC (2010) Comparative evaluation of phenol and thimerosal as preservatives for a candidate vaccine against American cutaneous leishmaniasis. Mem Inst Oswaldo Cruz Rio de Janeiro 105:86–91

    CAS  Google Scholar 

  • Moore BP, Brown WV (1971) Benzaldehyde in the defensive secretion of a Tiger beetle (Coleoptera: Carabidae). J Aust Ent Soc 10:142–143

    Google Scholar 

  • Moritz RFA, Kirchner WH, Crewe RM (1991) Chemical camouflage of the death’s head hawkmoth (Acherontia atropos L.) in honeybee colonies. Naturwissenschaften 78:179–182

    CAS  Google Scholar 

  • Nakashima Y, Birkett MA, Pye BJ, Powell W (2006) Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators. J Chem Ecol 32:1989–1998

    CAS  PubMed  Google Scholar 

  • Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM (2009) Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol 129:2480–2488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177

    CAS  PubMed  Google Scholar 

  • Newhart AT, Mumma RO (1979) Defensive secretions of three species of Acilius (Coleoptera: Dytiscidae) and their seasonal variations as determined by high-pressure liquid chromatography. J Chem Ecol 5:643–652

    CAS  Google Scholar 

  • Nogueira JMF (2012) Novel sorption-based methodologies for static microextraction analysis: a review on SBSE and related techniques. Anal Chimi Acta 757:1–10

    CAS  Google Scholar 

  • Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A (2004) Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry 65:2797–2802

    CAS  PubMed  Google Scholar 

  • Park ES, Moon WS, Song MJ, Kim MN, Chung KH, Yoon JS (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeter Biodegr 47:209–214

    CAS  Google Scholar 

  • Pasteels JM, Gregoire JC, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Annu Rev Entomol 28:263–289

    CAS  Google Scholar 

  • Peschke K, Metzler M (1982) Defensive and pheromonal secretion of the tergal gland of Aleochara curtula. J Chem Ecol 8:773–783

    CAS  PubMed  Google Scholar 

  • Peterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96

    CAS  Google Scholar 

  • Pluot-Sigwalt D (1983) Les glandes tégumentaires des Coléopteres Scarabaeidae: répartition des glandes sternales et pygidiales dans la famille. Bull Soc Entomol Fr 88:597–602

    Google Scholar 

  • Pluot-Sigwalt D (1988) Données sur l’activité et le role de quelque glandes tegumentaires, sternales, pygidiales et autres, chez deux especes de Canthon. Bull Soc Entomol Fr 93:89–98

    Google Scholar 

  • Pluot-Sigwalt D (1991) Le système glandulaire abdominal des coléopteres coprophages Scarabaeidae: ses tendances évolutives et ses relations avec la nidification. Ann Soc Entomol Fr 27:205–229

    Google Scholar 

  • Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. Chromatogr A 1217:2642–2666

    CAS  Google Scholar 

  • Roach B, Eisner T, Meinwald J (1990) Defense mechanisms of arthropods. 83. alpha- and beta-Necrodol, novel terpenes from a carrion beetle (Necrodes surinamensis, Silphidae, Coleoptera). J Org Chem 55:4047–4051

    CAS  Google Scholar 

  • Roncadori RW, Duffey SS, Blum MS (1985) Antifungal activity of defensive secretions of certain millipedes. Mycologia 77:185–191

    Google Scholar 

  • Rossini C, Attygalle AB, Gonzalez A, Smedley SR, Eisner M, Meinwald J, Eisner T (1997) Defensive production of formic acid (80%) by a carabid beetle (Galerita lecontei). Proc Natl Acad Sci USA 94:6792–6797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryssel H, Kloeters O, Germann G, Schäfer T, Wiedemann G, Oehlbauer (2009) The antimicrobial effect of acetic acid-an alternative to common local antiseptics? Burns 35:695–700

    CAS  PubMed  Google Scholar 

  • Saini RK, Hassanali A (2007) A 4-alkyl-substituted analogue of guaiacol shows greater repellency to savannah tsetse (Glossina spp.). J Chem Ecol 33:985–995

    CAS  PubMed  Google Scholar 

  • Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM (2009) A review of stir bar sorptive extraction. Chromatographia 69:79–94

    Google Scholar 

  • Sarkar N, Mukherjee A, Barik A (2013) Olfactory responses of Epilachna dodecastigma (Coleoptera: Coccinellidae) to long-chain fatty acids from Momordica charantia leaves. Arth Plant Int 7:339–348

    Google Scholar 

  • Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104

    Google Scholar 

  • Schierling A, Dettner K, Schmidt J, Seifert K (2012) Biosynthesis of the defensive alkaloid cicindeloine in Stenus solutus beetles. Naturwissenschaften 99:665–669

    CAS  PubMed  Google Scholar 

  • Schierling A, Seifert K, Sinterhauf SR, Rieß JB, Rupprecht JC, Dettner K (2013) The multifunctional pygidial gland secretion of the Steninae (Coleoptera: staphylinidae): ecological significance and evolution. Chemoecology 23:45–57

    CAS  Google Scholar 

  • Schultz TM, Puchalski YJ (2001) Chemical defenses in the tiger beetle Pseudoxycheila tarsalis Bates (Carabidae: Cicindelinae). Coleopts Bull 55:164–166

    Google Scholar 

  • Scott PD, Hepburn HR, Crewe RM (1975) Pygidial defensive secretions of some carabid beetles. Insect Biochem 5:805–811

    CAS  Google Scholar 

  • Shear WA, McPherson IS, Jones TH, Loria SF, Zigler KS (2010) Chemical defense of a troglobiont millipede, Tetracion jonesi Hoffman (Diplopoda, Callipodida, Abacionidae). Intl J Myriapodol 3:153–158

    Google Scholar 

  • Shibue K, Goto Y, Kawashima I, Shibue T (2004) Chemical analysis of surface hydrocarbons in fireflies by direct contact extraction and gas chromatography-mass spectrometry. Analyt Sci 20:1729–1731

    CAS  Google Scholar 

  • Shin S (2005) In vitro effects of essential oils from Ostericum koreanum against antibiotic-resistant Salmonella spp. Arch Pharm Res 28:765–769

    CAS  PubMed  Google Scholar 

  • Skaltsa HD, Demetzos C, Lazari D, Sokovic M (2003) Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochem 64:743–752

    CAS  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    CAS  PubMed  Google Scholar 

  • Stratford M, Eklund T (2003) Organic acids and esters. In: Russell NJ, Gould GW (eds) Food Preservatives, 2nd edn. Kluwer Academic/Plenum Publishers, New York, pp 48–84

    Google Scholar 

  • Sugimoto N, Tada A, Yamazaki T, Tanamoto K (2007) Antimicrobial activity and constituents in rumput roman extract as a natural food preservative. J Food Hyg Soc Jpn 48:106–111

    CAS  Google Scholar 

  • Taira J, Nakamura K, Higa Y (2003) Identification of secretory compounds from the millipede, Oxidus gracilis C.L. Koch (Polydesmida: Paradoxosomatidae) and their variation in different habitats. Appl Entomol Zool 38:401–404

    CAS  Google Scholar 

  • Tribe GD, Burger BV (2011) Olfactory ecology. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung beetles, John Wiley and Sons, Ltd, Chichester, UK pp 87–106

  • Vencl FV, Morton TC (1998) The shield defense of the sumac flea beetle, Blepharida rhois (Chrysomelidae: Alticinae). Chemoecology 8:25–32

    Google Scholar 

  • Vercammen J, Baltussen E, Sandra T, David F (2000) Considerations on static and dynamic sorptive and adsorptive sampling to monitor volatiles emitted by living plants. J High Res Chromatogr 23:547–553

    CAS  Google Scholar 

  • Vrkoc J, Ubik K (1974) 1-nitro-trans-1-pentadecene as the defensive compound of termites. Tetrahedron Lett 15:1463–1464

    Google Scholar 

  • Vuts J, Imrei Z, Birkett MA, Pickett JA, Woodcock CM, Tóth M (2014) Semiochemistry of the Scarabaeoidea. J Chem Ecol 40:190–210

    CAS  PubMed  Google Scholar 

  • White PR, Chambers J, Walter CM, Wilkins JPG, Millar JG (1989) Saw-toothed grain beetle Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae). Collection, identification, and bioassay of attractive volatiles from beetles and oats. J Chem Ecol 15:999–1013

    CAS  PubMed  Google Scholar 

  • Whittaker RH (1952) A study of summer foliage insect communities in the Great Smoky Mountains. Ecol Monogr 22:1–44

    Google Scholar 

  • Will K, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): interpretations in a phylogenetic framework. Biol J Linn Soc 74:459–481

    Google Scholar 

  • Witz BW, Mushinsky HR (1989) Pygidial secretions of Pasimachus subsulcatus (Coleoptera: Carabidae) deter predation by Eumeces inexpectatus (Squamata: Scineidae). J Chem Ecol 15:1033–1044

    CAS  PubMed  Google Scholar 

  • Yang D, Michel L, Chaumont JP, Millet-Clerc J (2000) Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 148:79–82

    Google Scholar 

  • Zarbin PH, Leal WS, Ávila CJ, Oliveira LJ (2007) Identification of the sex pheromone of Phyllophaga cuyabana (Coleoptera: Melolonthidae). Tetrahedron Lett 48:1991–1992

    CAS  Google Scholar 

  • Zuraida I, Sukarno Budijanto S (2011) Antibacterial activity of coconut shell liquid smoke (CS-LS) and its application on fish ball preservation. Int Food Research J 18:405–410

    Google Scholar 

Download references

Acknowledgments

We are grateful to P. Blasco and P. Candela for technical assistance. We would like to thank Bianca Delfosse for her assistance in the revised the final version of the manuscript. We thank the anonymous reviewers for their helpful suggestions. We are grateful to CONACYT Mexico for awarding a doctoral scholarship (14643) and a postdoctoral fellowship (184878 and 203310) to V.C.G. This paper is partly based on the Ph.D. thesis of V.C.G. This work was supported by CONACYT Mexico (168373-Etapa II) and the Ministerio de Ciencia e Innovación (Spain) (CGL2008-03878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vieyle Cortez.

Additional information

Handling Editor: Thomas Schmitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez, V., Verdú, J.R., Ortiz, A.J. et al. Chemical diversity and potential biological functions of the pygidial gland secretions in two species of Neotropical dung roller beetles. Chemoecology 25, 201–213 (2015). https://doi.org/10.1007/s00049-015-0189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-015-0189-2

Keywords

Navigation