Skip to main content
Log in

Chemical composition of the intramandibular glands of the ant Neoponera villosa (Fabricius, 1804) (Hymenoptera: Ponerinae)

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Products of exocrine glands modulate the behavior of social in sects. Among the exocrine glands, the function of intramandibular glands has not been well characterized in social Hymenoptera. To study the effects of exocrine gland secretions on the behavior of the ant, Neoponera villosa, identification of cuticular and intramandibular gland compounds was performed. Fifteen different compounds were identified in workers and queens of N. villosa. Linear alkanes C26, C27, C28, C30 and C36, as well as the methyl alkanes 13-, 11- MeC28, 3 MeC29, 13-, 11- MeC32, 13-, 11- MeC33, 13- MeC36, 13,17-; 15,19-DiMeC37 and 18-, 17-, 13-MeC38 and esters triacontyl acetate were found on the body and mandible surface of both workers and queens. The sterols, cholesterol and sitosterol were found only in the mandibles, with cholesterol present in both workers and queens, and sitosterol present only in queens. The results suggest that intramandibular gland compounds of N. villosa may play a role in worker activity. The presence of hydrocarbons and cholesterol in workers and sitosterol in the mandible of queens may be associated with caste profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla FC, Jones GR, Morgan ED, Cruz-Landim C (2003) Comparative study of the cuticular hydrocarbon composition of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Meliponini) workers and queens. Genet Mol Res 2:191–199

    CAS  PubMed  Google Scholar 

  • Abdalla FC, Jones GR, Morgan ED, Cruz-Landim C (2004) Chemical composition of the Dufour gland secretion in queens of Melipona bicolor (Hymenoptera, Meliponini). J Braz Chem Soc 15:621–625

    Article  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Walter P (2010) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Attygalle AB, Morgan ED (1984) Chemicals from the glands of ants. Chem Soc Rev 13:245–278

    Article  CAS  Google Scholar 

  • Ba AS, Guo DA, Norton RA, Philips SA, Nes WD (1995) Developmental differences in the sterol composition of Solenopsis invicta. Arch Insect Biochem Physiol 29:1–9

    Article  CAS  Google Scholar 

  • Behmer ST, Nes WD (2003) Insect sterol nutrition and physiology: a global overview. Adv Ins Physiol 31:1–72

    Article  CAS  Google Scholar 

  • Billen J (2008) A novel exocrine gland in the trochanter of ant legs. Acta Zool 89:201–204

  • Billen J (2009) Occurrence and structural organization of the exocrine glands in the legs of ants. Arthropod Struct Dev 38:2–15

  • Billen J, Delsinne T (2013) A novel intramandibular gland in the ant Tatuidris tatusia (Hymenoptera: formicidae). Myrmecol News 19:61–66

    Google Scholar 

  • Billen J, Morgan ED (1998) Pheromone communication in social insects—sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites, Westview, Boulder, pp 3–33

    Google Scholar 

  • Blomquist GJ, Bagnères AG (2010) Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bonavita-Cougourdan A, Clement JL, Lange C (1987) Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J Entomol Sci 22:1–10

    CAS  Google Scholar 

  • Bonavita-Cougourdan A, Clement JL, Lange C (1993) Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop: polymorphism of cuticular hydrocarbon patterns. J Chem Ecol 9:1461–1477

    Article  Google Scholar 

  • Caetano FH, Jaffé K, Zara FJ (2002) Formigas: biologia e anatomia. Rio Claro, Editora UNESP

    Google Scholar 

  • Clark AJ, Bloch K (1959) The absence of sterol synthesis in insects. J Biol Chem 234:2578–2582

    CAS  PubMed  Google Scholar 

  • Cruz-Landim C, Gracioli-Vitti LF, Abdalla FC (2011) Ultrastructure of the intramandibular gland of workers and queens of the stingless bee, Melipona quadrifasciata (Meliponini). J Ins Sci 11:1–9

    Article  Google Scholar 

  • Cuvillier-Hot VV, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Ins Physiol 47:485–493

    Article  CAS  Google Scholar 

  • D’Ettorre P, Heinze J, Schulz C, Francke W, Ayasse M (2004) Does she smell like a queen? Chemoreception of a cuticular hydrocarbons signal in the ant Pachycondyla inversa. J Exp Biol 207:1085–1091

    Article  PubMed  Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    Article  CAS  PubMed  Google Scholar 

  • Do Nascimento R, Morgan ED, Billen J, Schoeters E, Della-Lucia TMC, Bento JM (1993) Variation with the caste of the mandibular gland secretion in the leaf-cutting ant Atta sexdens rubropilosa. J Chem Ecol 19:907–918

    Article  CAS  PubMed  Google Scholar 

  • Fernandes IO, Oliveira ML, Delabie JHC (2014) Description of two new species in the Neotropical Pachycondyla foetida complex (Hymenoptera: Formicidae: Ponerinae) and taxonomic notes on the genus. Myrmecol News 19:133–163

  • Ferreira-Caliman MJ, Silva CI, Mateus S, Zucchi R, Nascimento FS (2012) Neutral Sterols of Cephalic Glands of Stingless Bees and Their Correlation with Sterols from Pollen. Psyche. doi:10.1155/2012/982802

    Google Scholar 

  • Grieneisen ML (1994) Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem Mol Biol 24:115–132

    Article  CAS  Google Scholar 

  • Hefetz A (2007) The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol News 10:59–68

    Google Scholar 

  • Hernández JV, Cabrera A, Jaffé K (1999) Mandibular gland secretion in different caste of the leaf-cutter ant Atta laevigata. J Chem Ecol 25:2433–2444

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap/Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hora RR, Delabie JHC, Santos CG, Serrão JE (2010) Glandular epithelium as a possible source of a fertility signal in Ectatomma tuberculatum (Hymenoptera: Formicidae) queens. PLoS ONE 5(4):e10219

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes WOH, Howse PE, Goulson D (2001) Mandibular gland chemistry of grass-cutting ants: species, caste, and colony variation. J Chem Ecol 27:109–124

    Article  CAS  PubMed  Google Scholar 

  • Jackson BD, Morgan ED (1993) Insect chemical communication: pheromones and exocrine glands of ants. Chemoecology 4:125–144

    Article  CAS  Google Scholar 

  • Jackson BD, Billen JPJ, Morgan ED (1989) Dufour gland contents of three species of Myrmecia (Hymenoptera, Formicidae), primitive ants of Australia. J Chem Ecol 15:2191–2205

    Article  CAS  PubMed  Google Scholar 

  • Jonsson S, Bergstrom G, Lanne BS, Stensdotter U (1988) Defensive odor emission from larvae of two sawfly species, Pristiphora erichsonii and P. wasmaeli. J Chem Ecol 14:713–721

    Article  CAS  PubMed  Google Scholar 

  • Koolman J (1990) Ecdysteroids. Zool Sci 7:563–580

    CAS  Google Scholar 

  • Lahav S, Soroker V, Hefetz A, Vander Meer RK (1999) Direct behavioural evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249

    Article  CAS  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Ent 53:523–542

    Article  Google Scholar 

  • Liebig J, Peeters C, Oldham NJ, Markstadter C, Hölldobler B (2000) Are variations in the cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator?. Proc Natl Acad Sci USA 97:4124–4131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lommelen E, Johnson CA, Drijfhout FP, Billen J, Wenseleers T, Gobin B (2006) Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J Chem Ecol 32:2023–2034

    Article  CAS  PubMed  Google Scholar 

  • Lucas C, Fresneau D, Kolmer K, Heinze J, Delabie JHC, Pho DB (2002) A multidisciplinary approach to discriminating different taxa in the species complex Pachycondyla villosa (Formicidae). Biol J Linn Soc 75:249–259

    Article  Google Scholar 

  • Lucas C, Pho DB, Fresneau D, Jallon JM (2004) Hydrocarbon circulation and colonial signature in Pachycondyla villosa. J Ins Physiol 50:595–607

    Article  CAS  Google Scholar 

  • Mackay WP, Mackay E (2010) The systematics and biology of the new world ants of the genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, New York

  • Marques-Silva S, Guss CPM, Delabie JHC, Mariano CSF, Zanuncio JC, Serrão JE (2006) Sensilla and secretory glands in the antennae of a primitive ant: dinoponera lucida (Formicidae, Ponerinae). Microsc Res Tech 69:885–890

    Article  PubMed  Google Scholar 

  • Martin S, Drijfhout F (2009) A Review of Ant Cuticular Hydrocarbons. J Chem Ecol 35:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Martins LCB, Serrão JE (2011) Morphology and histochemistry of the intramandibular glands in Attini and Ponerini (Hymenoptera, Formicidae) species. Microsc Res Tech 74:763–771

    Article  PubMed  Google Scholar 

  • Menzel F, Blüthgen N, Schmitt T (2008) Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination. Front Zool 5:1–16

    Article  Google Scholar 

  • Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fenn 43:515–530

    Google Scholar 

  • Orivel J, Dejean A (2001) Comparative effect of the venoms of ants of the genus Pachycondyla (Hymenoptera: ponerinae). Toxicon 39:195–201

    Article  CAS  PubMed  Google Scholar 

  • Panek LM, Gamboa GJ, Espelie KE (2001) The effect of a wasp’s age on Its cuticular hydrocarbon profile and Its tolerance by nestmate and non-nestmate conspecifics (Polistes fuscatus, Hymenoptera: vespidae). Ethology 107:55–63

    Article  Google Scholar 

  • Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B Biol Sci 266:1323–1327

    Article  CAS  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274:255–259

    Article  CAS  PubMed  Google Scholar 

  • Santos CG, Megiolaro F, Serrão JE, Blochtoin B (2009) Morphology of the head salivary and intramandibular glands of the stingless bee Plebeia emerina (Friese) (Hymenoptera, Meliponini) workers associated with propolis. Ann Ent Soc Am 102:137–143

    Article  Google Scholar 

  • Schmidt CA, Shattuck SO (2014) The higher classification of the ant subfamily ponerinae (Hymenoptera: formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817:001–242

    Article  CAS  Google Scholar 

  • Singer TL, Espelie KE, Gamboa GJ (1998) Nest and nestmate discrimination in independent-founding wasps. In: Vander Meer RK, Breed MD, Winston ML, Espelie EK (eds) Pheromone communication in social insects. Westview, Boulder, pp 57–78

    Google Scholar 

  • Svoboda JA, Herbert EW, Thompson MJ, Feldlaufer MF (1986) Selective sterol transfer in the honey bee: its significance and relationship to other hymenoptera. Lipids 21:97–101

    Article  CAS  Google Scholar 

  • Svoboda JA, Feldhaufer MF, Weirich GF (1994) Evolutionary aspects of steroid utilization in insects. ACS Symp Ser 562:126–139

    Article  CAS  Google Scholar 

  • Thomas ML, Parry LJ, Allan RA, Elgar MA (1999) Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87–92

    Article  CAS  Google Scholar 

  • Tschuch G, Lindemann P, Niesen A, Csuk R, Moritz G (2005) A novel long-chained acetate in the defensive secretion of thrips. J Chem Ecol 31:1555–1565

    Article  CAS  PubMed  Google Scholar 

  • Vilela EF, Della Lucia TNC (2001) Feromônios de insetos: biologia, química e emprego no manejo de pragas. Ribeirão Preto, Holos

    Google Scholar 

  • Wagner D, Tissot M, Cuevas W, Gordon DM (2000) Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J Chem Ecol 26:2245–2257

    Article  CAS  Google Scholar 

  • Weil T, Hoffmann K, Kroiss J, Strohm E, Korb J (2009) Scent of a queen-cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96:315–319

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JW, Duffield RM (1988) Pheromones of Hymenoptera and Isoptera. In: Morgan ED, Mandava NB (eds) Handbook of Natural Pesticides, 4th edn. CRC Press, Boca Raton, FL, Pheromones, pp 59–206

    Google Scholar 

  • Wild AL (2002) The genus Pachycondyla (Hymenoptera: formicidae) in Paraguay. Bol Mus Nac Hist Nat Parag 14:1–18

    Google Scholar 

  • Wilgenburg EV, Symonds MRE, Elgar MA (2011) Evolution of cuticular hydrocarbon diversity in ants. J Evol Biol 24:1188–1198

    Article  PubMed  Google Scholar 

  • Wilson EO (1963) The social biology of ants. Annu Rev Ent 8:345–368

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Zimma BO, Ayasse M, Tengo J, Ibarra F, Schulz C, Francke W (2003) Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae). J Comp Physiol A 189:769–775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Brazilian research agencies Coordination of Improvement of Higher Education Personnel (CAPES), Minas Gerais State Research Agency (FAPEMIG), National Council of Research (CNPq), National Program for Excellence (PRONEX SECTI-FAPESB/CNPq—PNX 0011/2009), São Paulo State Research Agency (FAPESP 2010/10027-5) and National Institute of Science and Technology of Semiochemicals in Agriculture (INCT). Authors are grateful to Mr. José Raimundo Maia and Mr. José Adade for their assistance in the ant collection (Laboratory of Myrmecology the Cocoa Research Center, Ilhéus, Bahia, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Serrão.

Additional information

Handling Editor: Stephen J. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.C.B., Do Nascimento, F.S., Campos, M.C.G. et al. Chemical composition of the intramandibular glands of the ant Neoponera villosa (Fabricius, 1804) (Hymenoptera: Ponerinae). Chemoecology 25, 25–31 (2015). https://doi.org/10.1007/s00049-014-0172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-014-0172-3

Keywords

Navigation