Skip to main content

Advertisement

Log in

Synthesis, urease inhibitory and anticancer evaluation of glucosamine-sulfonylurea conjugates

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Urease catalyses the hydrolysis of urea to ammonia and carbon dioxide. This enzyme is important in the virulence of several human pathogens and urease activity in soil can cleave urea fertilisers prematurely, leading to waste of agricultural nitrogen. A series of arylsulfonylurea-glucosamine hybrid compounds were synthesised. Reaction of arylsulfonamides with phenyl chloroformate and 4-dimethylaminopyridine gave either phenyl N-(2,4-arylsulfonyl)carbamate 4-dimethylaminopyridinium salts or N-(4-arylsulfonyl)-4-dimethylaminopyridinium-1-carboxamide inner salts, depending on the substitution on the arylsulfonamide. Both types of intermediates, gave ester-protected arylsulfonylurea-glucosamines, when treated with 1,3,4,6-tetra-O-acetylglucosamine. Simple methanolysis gave the arylsulfonylurea-glucosamine hybrids as interconverting mixtures of anomers. Both the O-acetyl intermediates and the target arylsulfonylurea-glucosamines inhibited jack-bean urease with IC50 10–36 μM. This narrow range of values precluded the determination of structure-activity relationships and docking studies suggested several different optimum docking poses for the various analogues. No analogues showed radical-scavenging activity. Several compounds showed modest cytotoxic activity against renal carcinoma cells in the NCI 60-cell-line screen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Callahan BP, Yuan Y, Wolfenden R. The burden borne by urease. J Am Chem Soc. 2005;127:10828–9. https://doi.org/10.1021/ja0525399

    Article  CAS  PubMed  Google Scholar 

  2. Rutherford JC. The emerging role of urease as a general microbial virulence factor. PLoS Pathogens. 2014;10:e1004062 https://doi.org/10.1371/journal.ppat.1004062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song W-Q, Liu M-L, Li S-Y, Xiao Z-P. Recent efforts in the discovery of urease inhibitor identifications. Curr Top Med Chem. 2022;22:95–7. https://doi.org/10.2174/1568026621666211129095441

    Article  CAS  PubMed  Google Scholar 

  4. Svane S, Sigurdarson JJ, Finkenwirth F, Eitinger T, Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep. 2020;10:8503 https://doi.org/10.1038/s41598-020-65107-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sohrabi M, Nazari Montazer M, Farid SM, Tanideh N, Dianatpour M, Moazzam A, et al. Design and synthesis of novel nitrothiazolacetamide conjugated to different thioquinazolinone derivatives as anti-urease agents. Sci Rep. 2022;12:2003 https://doi.org/10.1038/s41598-022-05736-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamad A, Khan MA, Rahman KM, Ahmad I, Ul-Haq Z, Khan S, et al. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg Chem. 2020;102:104057 https://doi.org/10.1016/j.bioorg.2020.104057

    Article  CAS  PubMed  Google Scholar 

  7. Bury‐Moné S, Skouloubris S, Labigne A, De Reuse H. The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol. 2001;42:1021–34. https://doi.org/10.1046/j.1365-2958.2001.02689.x

    Article  PubMed  Google Scholar 

  8. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629–61. https://doi.org/10.1128/mmbr.00078-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenstein IJ, Hamilton-Miller J, Musher DM. Inhibitors of urease as chemotherapeutic agents. CRC Crit Rev Microbiol. 1984;11:1–12

    Article  CAS  Google Scholar 

  10. Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res. 2018;13:101–12. https://doi.org/10.1016/j.jare.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noreen M, Rasool N, Gull Y, Zubair M, Mahmood T, Ayub K, et al. Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties. Mol. 2015;20:19914–28. https://doi.org/10.3390/molecules201119661

    Article  CAS  Google Scholar 

  12. Bailie N, Osborne C, Leininger J, Fletcher T, Johnston S, Ogburn P, et al. Teratogenic effect of acetohydroxamic acid in clinically normal beagles. Am J Vet Res. 1986;47:2604–11

    CAS  PubMed  Google Scholar 

  13. Prakash O, Bachan Upadhyay LS. Acetohydroxamate inhibition of the activity of urease from dehusked seeds of water melon (Citrullus vulgaris). J Enz Inh Med Chem. 2004;19:381–7. https://doi.org/10.1080/14756360409162454

    Article  CAS  Google Scholar 

  14. Shi W-K, Deng R-C, Wang P-F, Yue Q-Q, Liu Q, Ding K-L, et al. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg Med Chem. 2016;24:4519–27. https://doi.org/10.1016/j.bmc.2016.07.052

    Article  CAS  PubMed  Google Scholar 

  15. Mamidala R, Bhimathati SRS, Vema A. Discovery of Novel Dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori Urease inhibitors. Bioorg Chem. 2021;114:105010 https://doi.org/10.1016/j.bioorg.2021.105010

    Article  CAS  PubMed  Google Scholar 

  16. Rezaei EB, Abedinifar F, Azizian H, Montazer MN, Asadi M, Hosseini S, et al. Design, synthesis, and evaluation of metronidazole-1, 2, 3-triazole derivatives as potent urease inhibitors. Chem Pap. 2021;75:4217–26

    Article  CAS  Google Scholar 

  17. Khan M, Khan KM, Parveen S, Shaikh M, Fatima N, Choudhary MI. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorg Chem. 2019;83:595–10. https://doi.org/10.1007/s11696-021-01653-4

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed A, Saeed A, Ali OM, El-Bahy ZM, Channar PA, Khurshid A, et al. Exploring amantadine derivatives as urease inhibitors: Molecular docking and structure–activity relationship (SAR) studies. Mol. 2021;26:7150 https://doi.org/10.3390/molecules26237150

    Article  CAS  Google Scholar 

  19. Todd MJ, Hausinger RP. Fluoride inhibition of Klebsiella aerogenes urease: mechanistic implications of a pseudo-uncompetitive, slow-binding inhibitor. Biochem. 2000;39:5389–96. https://doi.org/10.1021/bi992287m

    Article  CAS  Google Scholar 

  20. Benini S, Cianci M, Mazzei L, Ciurli S. Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics. JBIC J Biol Inog Chem. 2014;19:1243–61. https://doi.org/10.1007/s00775-014-1182-x

    Article  CAS  Google Scholar 

  21. Mohammed A, Suaifan GARY, Shehadeh MB, Okechukwu PN. Design, synthesis and biological evaluation of 1, 8-naphthyridine glucosamine conjugates as antimicrobial agents. Drug Dev Res. 2019;80:179–86. https://doi.org/10.1002/ddr.21508

    Article  CAS  PubMed  Google Scholar 

  22. Suaifan GA, Shehadeh MB, Darwish RM, Al-Ijel H, Abbate V. Design, synthesis and in vivo evaluation of novel glycosylated sulfonylureas as antihyperglycemic agents. Mol. 2015;20:20063–78. https://doi.org/10.3390/molecules201119676

    Article  CAS  Google Scholar 

  23. Mohammed AA, Suaifan GA, Shehadeh MB, Okechukwu PN. Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivatives. Eur J Med Chem. 2020;202:112513 https://doi.org/10.1016/j.ejmech.2020.112513

    Article  CAS  PubMed  Google Scholar 

  24. Zahedipour F, Dalirfardouei R, Karimi G, Jamialahmadi K. Molecular mechanisms of anticancer effects of Glucosamine. Biomed Pharmacor. 2017;95:1051–8. https://doi.org/10.1016/j.biopha.2017.08.12226

    Article  CAS  Google Scholar 

  25. Chen Q, Yang F, Du Y. Synthesis of a C3-symmetric (1→6)-N-acetyl-β-D-glucosamine octadecasaccharide using click chemistry. Car Res. 2005;340:2476–82. https://doi.org/10.1016/j.carres.2005.08.013

    Article  CAS  Google Scholar 

  26. Konda S, Raparthi S, Bhaskar K, Munaganti RK, Guguloth V, Nagarapu L, et al. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg Med Chem Lett. 2015;25:1643–6. https://doi.org/10.1016/j.bmcl.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  27. Lal J, Gupta SK, Thavaselvam D, Agarwal DD. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Euro J Med Chem. 2013;64:579–88. https://doi.org/10.1016/j.ejmech.2013.03.012

    Article  CAS  Google Scholar 

  28. Abbas A, Murtaza S, Tahir MN, Shamim S, Sirajuddin M, Rana UA, et al. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. J Mol Struct. 2016;1117:269–75. https://doi.org/10.1016/j.molstruc.2016.03.066

    Article  CAS  Google Scholar 

  29. Kennedy JF, Thorley M. Pharmaceutical Substances. In: Kleeman A, Engel J, Kutscher B, Reichert George D, eds. Bioseparation. 3rd Ed. Stuttgart/New York: Thiele Verlag; 1999. p. 2286. 10.1023/A:1008114712553

    Google Scholar 

  30. Suaifan GARY, Goodyer CL, Threadgill MD. Synthesis of N-(methoxycarbonylthienylmethyl) thioureas and evaluation of their interaction with inducible and neuronal nitric oxide synthase. Molecules. 2010;15:3121–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghorab MM, Alsaid MS, El-Gaby MS, Safwat NA, Elaasser MM, Soliman AM. Biological evaluation of some new N-(2, 6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Euro J Med Chem. 2016;124:299–10. https://doi.org/10.1016/j.ejmech.2016.08.060

    Article  CAS  Google Scholar 

  32. Wan Y, Fang G, Chen H, Deng X, Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Euro J Med Chem. 2021;226:113837 https://doi.org/10.1016/j.ejmech.2021.113837

    Article  CAS  Google Scholar 

  33. Ma T, Fuld AD, Rigas JR, Hagey AE, Gordon GB, Dmitrovsky E, et al. A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy. 2012;58:321–9. https://doi.org/10.1159/000343165

    Article  CAS  PubMed  Google Scholar 

  34. Rauf MK, Badshah A, Gielen M, Ebihara M, de Vos D. Ahmed S. Synthesis, structural characterization and in vitro cytotoxicity and anti-bacterial activity of some copper (I) complexes with N, N′-disubstituted thioureas. J Inorg Biochem. 2009;103:1135–44. https://doi.org/10.1016/j.jinorgbio.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  35. Yaseen S, Rauf MK, Zaib S, Badshah A, Tahir MN, Ali MI, et al. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Co (III) complexes with N, N, N′-trisubstituted acylthioureas. Inorganica Chim. 2016;443:69–77. https://doi.org/10.1016/j.ica.2015.12.027

    Article  CAS  Google Scholar 

  36. Myszka H, Bednarczyk D, Najder M, Kaca W. Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride and its derivatives. Carbohyd Res. 2003;338:133–41. https://doi.org/10.1016/S0008-6215(02)00407-X

    Article  CAS  Google Scholar 

  37. Weatherburn M. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971–4. https://doi.org/10.1021/ac60252a045

    Article  CAS  Google Scholar 

  38. Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55Å resolution. J biol Inorg Chem. 2000;5:110–8. https://doi.org/10.1007/s007750050014

    Article  CAS  PubMed  Google Scholar 

  39. Pearson MA, Michel LO, Hausinger RP, Karplus PA. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. Biochem. 1997;36:8164–72. https://doi.org/10.1021/bi970514j

    Article  CAS  Google Scholar 

  40. Saeed A, Larik FA, Channar PA, Mehfooz H, Ashraf MH, Abbas Q, et al. An expedient synthesis of N‐(1‐(5‐mercapto‐4‐((substituted benzylidene) amino)‐4H‐1, 2, 4‐triazol‐3‐yl)‐2‐phenylethyl) benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies. Chem Bio Drug Des. 2017;90:764–77. https://doi.org/10.1111/cbdd.12998

    Article  CAS  Google Scholar 

  41. Channar PA, Saeed A, Albericio F, Larik FA, Abbas Q, Hassan M, et al. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Mol. 2017;22:1352 https://doi.org/10.3390/molecules22081352

    Article  CAS  Google Scholar 

  42. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al. Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: in vitro urease inhibition and molecular docking studies. Bioorg Chem. 2016;66:111–6. https://doi.org/10.1016/j.bioorg.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  43. Liu H, Wang Y, Lv M, Luo Y, Liu B-M, Huang Y, et al. Flavonoid analogues as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg Chem. 2020;105:104370 https://doi.org/10.1016/j.bioorg.2020.104370

    Article  CAS  PubMed  Google Scholar 

  44. Moghimi S, Goli‐Garmroodi F, Allahyari‐Devin M, Pilali H, Hassanzadeh M, Mahernia S, et al. Synthesis, evaluation, and molecular docking studies of aryl urea‐triazole‐based derivatives as anti‐urease agents. Arch Pharm. 2018;351:1800005 https://doi.org/10.1002/ardp.201800005

    Article  CAS  Google Scholar 

  45. Abid O-U-R, Babar TM, Ali FI, Ahmed S, Wadood A, Rama NH, et al. Identification of novel urease inhibitors by high-throughput virtual and in vitro screening. ACS Med Chem Lett. 2010;1:145–9. https://doi.org/10.1021/ml100068u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sączewski F, Kornicka A, Brzozowski Z. 4-Dimethylaminopyridinium carbamoylides as stable and non-hazardous substitutes of arylsulfonyl and heteroaryl isocyanates. Green Chem. 2006;8:647–56. https://doi.org/10.1039/B604376C

    Article  Google Scholar 

  47. Sączewski F, Kuchnio A, Samsel M, Łobocka M, Kiedrowska A, Lisewska K, et al. Synthesis of novel aryl (heteroaryl) sulfonyl ureas of possible biological interest. Molecules. 2010;15:1113–26. https://doi.org/10.3390/molecules15031113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan KM, Iqbal S, Lodhi MA, Maharvi GM, Choudhary MI, Perveen S. Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg Med Chem. 2004;12:1963–8. https://doi.org/10.1016/j.bmc.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  49. Begum A, Choudhary M, Betzel C. The first Jack bean urease (Canavalia ensiformis) complex obtained at 1.52 resolution. Protein Data Bank. 2012. https://doi.org/10.2210/pdb4H9M/pdb

  50. Biovia DS. Discovery Studio Visualizer; v21. 1.0. San Diego. CA, USA: 20298 Dassault Systèmes; 2021.

    Google Scholar 

  51. Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opi Chem Biol. 2010;14:347–61. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of the Scientific Research for financial support [Grant numbers 2213, 2460] and the support of Dr. Panjwani Center for Molecular Medicine and Drug Research-Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghadeer A. R. Y. Suaifan.

Ethics declarations

Conflict of interest

Disclosures related to phenylsulfonylurea derivatives of 2-amino-2-deoxy-D-glucopyranose derivatives, their method of preparation, and the use thereof has been registered for patent (Reg. No. PCT/JO2022/050010).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suaifan, G.A.R.Y., Shehadeh, M., Tahboub, D. et al. Synthesis, urease inhibitory and anticancer evaluation of glucosamine-sulfonylurea conjugates. Med Chem Res 33, 663–676 (2024). https://doi.org/10.1007/s00044-024-03208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03208-0

Navigation