Skip to main content
Log in

Acyl-CoA thioesters as chemically-reactive intermediates of carboxylic acid-containing drugs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Several carboxylic acid-containing drugs have been withdrawn from clinical use due to adverse drug reactions including idiosyncratic hepatotoxicity and anaphylaxis. Carboxylic acid drugs are increasingly being shown to be metabolized to chemically-reactive acyl-CoA thioester-linked intermediary metabolites that are proposed to potentially mediate these toxicities. Acyl-CoA thioesters possess an electrophilic carbonyl-carbon and are able to undergo non-enzyme catalyzed transacylation reactions with biological nucleophiles leading to covalent binding to protein and drug-protein adduct formation. Such drug-protein adducts are proposed to mediate idiosyncratic drug toxicity reactions to carboxylic acid drugs, similar to the more studied mechanism of chemically-reactive acyl glucuronides potentially mediating carboxylic acid drug toxicity through the formation of immunogenic covalent protein adducts. Carboxylic acid drug acyl-CoA formation is catalyzed by acyl-CoA synthetase enzymes located with highest activity in liver tissue and in mitochondrial, peroxisomal, microsomal, and cytosolic cellular fractions. As is also true for unstable and reactive acyl glucuronide metabolites, the role of reactive acyl-CoA thioester metabolites in mediating idiosyncratic drug toxicity is difficult to assess. Importantly, in comparison to acyl glucuronide formation, results from mechanistic studies have revealed that acyl-CoA thioester formation can be the predominant pathway leading to covalent protein adduct formation in vitro and in vivo. This review includes an examination of the metabolism of carboxylic acid-containing drugs to reactive acyl-CoA thioesters leading to covalent binding to protein and potential implications with regard to carboxylic acid drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ballatore C, Huryn DM, Smith AB. Carboxylic acid (bio)isosteres in drug design. ChemMedChem. 2013;8:385–95. https://doi.org/10.1002/cmdc.201200585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fung M, Thornton A, Mybeck K, Wu JH, Hornbuckle K, Muniz E. Evaluation of the characteristics of safety withdrawal of prescription drugs from world-wide pharmaceutical markets-1960 to 1999. Drug Inf J. 2001;35:293–317. https://doi.org/10.1177/009286150103500134

    Article  Google Scholar 

  3. Zimmerman HJ. Hepatic injury associated with nonsteroidal anti-inflammatory drugs. In: Lewis AJ, Gay GR, eds. Nonsteroidal anti-inflammatory drugs: mechanisms and clinical uses. 2nd ed. New York: Marcel Dekker; 1994. p. 171–94.

    Google Scholar 

  4. Boelsterli UA, Zimmerman HJ, Kretz-Rommel A. Idiosyncratic liver toxicity of nonsteroidal anti-inflammatory drugs: molecular mechanisms and pathology. Crit Rev Toxicol. 1995;25:207–35. https://doi.org/10.3109/10408449509089888

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez-Borges M, Caballero-Fonseca F, Cariles-Hulett A, González-Aveledo L. Hypersensitivity reactions to nonsteroidal anti-inflammatory drugs: an update. Pharmaceuticals. 2010;3:10–18. https://doi.org/10.3390/ph3010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy JK, Rao MS. Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator. J Natl Cancer Inst. 1977;59:1645–50. https://doi.org/10.1093/jnci/59.6.1645

    Article  CAS  PubMed  Google Scholar 

  7. Faed EM. Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev. 1984;15:1213–49. https://doi.org/10.3109/03602538409033562

    Article  CAS  PubMed  Google Scholar 

  8. Domínguez-Ortega J, Martínez-Alonso JC, Domínguez-Ortega C, Fuentes MJ, Frades A, Fernández-Colino T. Anaphylaxis to oral furosemide. Allergol et Immunopathol. 2003;31:345–7. https://doi.org/10.1016/S0301-0546(03)79210-6

    Article  Google Scholar 

  9. Bota RG, Ligasan AP, Najdowski TG, Novac A. Acute hypersensitivity syndrome caused by valproic acid: a review of the literature based on a case report. Perm J 2011;15:80–4. https://doi.org/10.7812/TPP/10-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kowalski ML, Makowska JS, Blanca M, Bavbek S, Bochenek G, Bousquet P, et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) – classification, diagnosis and management: review of the EAACI/ENDA and GA2LEN/HANA. Allergy. 2011;66:818–29. https://doi.org/10.1111/j.1398-9995.2011.02557.x

    Article  CAS  PubMed  Google Scholar 

  11. Boelsterli UA. Xenobiotic acyl glucuronides and acyl-CoA thioesters as protein reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr Drug Metab. 2002;4:3439–50.

    Google Scholar 

  12. Stogniew M, Fenselau C. Electrophilic reactions of acyl-linked glucuronides. Drug Metab Dispos. 1982;10:609–13.

    CAS  PubMed  Google Scholar 

  13. Sallustio BC, Nunthasomboon S, Drogemuller CJ, Knights KM. In vitro covalent binding of nafenopin-CoA to human liver proteins. Toxicol Appl Pharm. 2000;163:176–82. https://doi.org/10.1006/taap.1999.886

    Article  CAS  Google Scholar 

  14. Hertz R, Bar-Tana J. The acylation of proteins by xenobiotic amphipathic carboxylic acids in cultured rat hepatocytes. Biochem J. 1988;254:39–44. https://doi.org/10.1042/bj2540039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langguth HS, Benet LZ. Acyl glucuronides revisited: is the glucuronidation proces a toxification as well as a detoxification mechanism? Drug Metab Rev. 1992;24:5–47. https://doi.org/10.3109/03602539208996289

    Article  Google Scholar 

  16. Porubek DJ, Grillo MP, Baillie TA. The covalent binding of valproic acid and its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid, in rats and in isolated rat hepatocytes. Drug Metab Dispos. 1989;17:123–30.

    CAS  PubMed  Google Scholar 

  17. Spracklin DK, Thummel KE, Kharasch ED. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos. 1996;24:976–83.

    CAS  PubMed  Google Scholar 

  18. Levine B. Immunologic mechanisms of penicillin allergy. A haptenic model system for the study of allergic disease in man. N. Engl J Med. 1966;275:1115–25.

    Article  CAS  PubMed  Google Scholar 

  19. Huxtable R. Thiols, disulfides and thioesters. In: Frieden E, editor. Biochemistry of Sulfur. New York: Plenum Press; 1986. p. 230–45.

    Chapter  Google Scholar 

  20. Dutton GJ. Glucuronidation of drugs and other compounds. Boca Raton, FL: CRC Press; 1980.

    Google Scholar 

  21. Smith PC, Benet LZ, McDonagh AF. Covalent binding of zomepirac glucuronide to proteins: evidence for a Schiff base mechanism. Drug Metab Dispos. 1990;18:639–44.

    CAS  PubMed  Google Scholar 

  22. Ding A, Ojingwa JC, McDonagh AF, Benet LZ. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci. 1993;90:3797–801. https://doi.org/10.1073/pnas.90.9.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benet LZ, Spahn-Langguth H, Iwakawa S, Volland C, Mizuma T, Mayer S, et al. Predictability of covalent binding of acidic drugs in man. Life Sci. 1993;53:141–46. https://doi.org/10.1016/0024-3205(93)90279-C

    Article  Google Scholar 

  24. Sawamura R, Okudaira, Watanabe K, Murai T, Kobayashi Y, Tachibana M, et al. Predictability of idiosyncratic drug toxicity risk for carboxylic acid-containing drugs based on the chemical instability of acyl glucuronide. Drug Metab Dispos. 2010;38:1857–64. https://doi.org/10.1124/dmd.110.034173

    Article  CAS  PubMed  Google Scholar 

  25. Iwamura A, Ito M, Mitsui H, Hasegawa J, Kosaka K, Kino I, et al. Toxicological evaluation of acyl glucuronides utilizing half-lives, peptide adducts, and immunostimulation assays. Toxicol Vitr. 2015;30:241–9. https://doi.org/10.1016/j.tiv.2015.10.013

    Article  CAS  Google Scholar 

  26. Baba A, Yoshioka T. Structure-activity relationships for degradation reaction of 1-β-O-acyl glucuronides: kinetic description and prediction of intrinsic electrophilic reactivity under physiological conditions. Chem Res Toxicol. 2009;22:158–72. https://doi.org/10.1021/tx800292m

    Article  CAS  PubMed  Google Scholar 

  27. Camilleri P, Buch A, Soldo B, Hutt AJ. The influence of physicochemical properties on the reactivity and stability of acyl glucuronides. Xenobiotica. 2018;48:958–72. https://doi.org/10.1080/00498254.2017.1384967

    Article  CAS  PubMed  Google Scholar 

  28. Bradshaw PR, Athersuch TJ, Stachulski AV, Wilson ID. Acyl glucuronide reactivity in perspective. Drug Disco Today. 2020;25:1639–50. https://doi.org/10.1016/j.drudis.2020.07.009

    Article  CAS  Google Scholar 

  29. Knights KM. Role of hepatic fatty acid: coenzyme A ligases in the metabolism of xenobiotic carboxylic acids. Clin Exp Pharm Physiol. 1998;25:776–82. https://doi.org/10.1111/j.1440-1681.1998.tb02152.x

    Article  CAS  Google Scholar 

  30. Knights KM, Sykes MJ, Miners JO. Amino acid conjugation: contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opin Drug Metab Toxicol. 2007;3:159–68. https://doi.org/10.1517/17425255.3.2.159

    Article  CAS  PubMed  Google Scholar 

  31. Grillo MP. Drug-S-acyl-glutathione thioesters: synthesis, bioanalytical properties, chemical reactivity, biological formation and degradation. Curr Drug Metab. 2011;12:229–44.

    Article  CAS  PubMed  Google Scholar 

  32. Stern RH. The role of nicotinic acid metabolites in flushing and hepatotoxicity. J Clin Lipido. 2007;3:191–3. https://doi.org/10.1016/j.jacl.2007.04.003

    Article  Google Scholar 

  33. Shirley MA, Guan X, Kaiser DG, Halstead GW, Baillie TA. Taurine conjugation of ibuprofen in humans and in rat liver in vitro. Relationship to metabolic chiral inversion. J Pharm Exp Ther. 1994;269:1166–75.

    CAS  Google Scholar 

  34. Tishler SL, Goldman P. Properties and reactions of salicyl-coenzyme A. Biochem Pharm. 1970;19:143–50. https://doi.org/10.1016/0006-2952(70)90335-7

    Article  CAS  PubMed  Google Scholar 

  35. Grillo MP, Benet LZ. Studies on the reactivity of clofibryl-S-acyl-CoA thioester with glutathione in vitro. Drug Metab Dispos. 2002;30:55–62. https://doi.org/10.1124/dmd.30.1.55

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Benet LZ, Grillo MP. Studies on the chemical reactivity of 2-phenylpropionic acid 1-O-acyl glucuronide and S-acyl-CoA thioester metabolites. Chem Res Toxicol. 2002;15:1309–17. https://doi.org/10.1021/tx020013l

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Grillo MP, Benet LZ. In vitro studies on the chemical reactivity of 2,4-dichlorophenoxyacetyl-S-acyl-CoA thioester. Toxicol Appl Pharm. 2003;187:101–9. https://doi.org/10.1016/S0041-008X(02)00043-1

    Article  CAS  Google Scholar 

  38. Grillo MP, Lohr MT. Covalent binding of phenylacetic acid to protein in incubations with freshly isolated rat hepatocytes. Drug Metab Dispos. 2009;37:1073–89. https://doi.org/10.1124/dmd.108.026153

    Article  CAS  PubMed  Google Scholar 

  39. Tillander V, Alexson SHE, Cohen DE. Deactivating fatty acids: acyl-CoA thioesterase-mediated control of lipid metabolism. Trends Endrocrinol Metab. 2017;28:473–84. https://doi.org/10.1026/j.tem.2017.03.001

    Article  CAS  Google Scholar 

  40. Dickinson RG, Baker PV, King AR. Studies on the reactivity of acyl glucuronides–VII. Salicyl acyl glucuronide reactivity in vitro and covalent binding of salicylic acid to plasma protein of humans taking aspirin. Biochem Pharm. 1994;47:469–76. https://doi.org/10.1016/0006-2952(94)90177-5

    Article  CAS  PubMed  Google Scholar 

  41. Duncan JA, Gilman AG. Autoacylation of G protein alpha subunits. J Biol Chem. 1996;271:23594–600. https://doi.org/10.1074/jbc.271.38.23594

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita A, Watanabe M, Tonegawa T, Sugiura K, Waku K. Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms of rat liver: their effect on enzyme activity. Biochem J. 1995;312:301–8. https://doi.org/10.1042/bj3120301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goddard AD, Watts A. Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol. 2012;10:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab. 2020;38:100941. https://doi.org/10.1016/j.molmet.2020.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner GR, Payne RM. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem. 2013;288:29036–45. https://doi.org/10.1074/jbc.M113.486753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagner GR, Bhatt DP, O’Connell M, Thompson W, Dubois LG, Backos DS, et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 2017;25:823–37. https://doi.org/10.1016/j.cmet.2017.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kulkarni RA, Worth AJ, Zengeya TT, Shrimp JH, Garlick JM, Robert AM, et al. Discovering targets of non-enzymatic acylation by thioester reactivity profiling. Cell Chem Biol. 2017;24:231–42. https://doi.org/10.1016/j.chembiol.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. James AM, Hoogewijs K, Logan A, Hall AR, Ding S, Fearnley IM, et al. Non-enzymatic N-acetylation of lysine residues by acetyl-CoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep. 2017;18:2105–12. https://doi.org/10.1016/j.celrep.2017.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weinert BT, Moustafa T, Iesmantavicius V, Zechner R, Choudhary C. Analysis of acetylation stoichiometry suggests that Sirt3 repairs nonenzymatic acetylation lesions. EMBO J. 2015;34:2620–32. https://doi.org/10.15252/embj.201591271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baillie TA, Davis MR. Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom. 1993;22:319–25. https://doi.org/10.1002/bms.1200220602

    Article  CAS  PubMed  Google Scholar 

  51. Shore LJ, Fenselau C, King AR, Dickinson RG. Characterization and formation of the glutathione conjugate of clofibric acid. Drug Metab Dispos. 1995;23:119–23.

    CAS  PubMed  Google Scholar 

  52. Sidenius U, Skonberg C, Olsen J, Hansen SH. In vitro reactivities of carboxylic acid-CoA thioesters with glutathione. Chem Res Toxicol. 2004;17:75–8. https://doi.org/10.1021/tx034127o

    Article  CAS  PubMed  Google Scholar 

  53. Li C, Olurinde MO, Hodges LM, Hodges LM, Grillo MP, Benet LZ. Covalent binding of 2-phenylpropionyl-S-acyl-CoA thioester to tissue proteins in vitro. Drug Metab Dispos. 2003;31:727–30. https://doi.org/10.1124/dmd.31.6.727

    Article  CAS  PubMed  Google Scholar 

  54. Grillo MP, Hua F. Enantioselective formation of ibuprofen-S-acyl-glutathione in vitro in incubations of ibuprofen with rat hepatocytes. Chem Res Toxicol. 2008;21:1749–59. https://doi.org/10.1021/tx800098h

    Article  CAS  PubMed  Google Scholar 

  55. Darnell M, Breitholtz K, Isin EM, Jurva U, Weidolf L. Significantly different covalent binding of oxidative metabolites, acyl glucuronides, and S-acyl CoA conjugates formed from xenobiotic carboxylic acids in human liver microsomes. Chem Res Toxicol. 2015;28:886–96. https://doi.org/10.1021/tx500514z

    Article  CAS  PubMed  Google Scholar 

  56. Shang J, Tschirret-Guth R, Cancilla M, Samuel K, Chen Q, Chobanian HR, et al. Bioactivation of GPR40 agonist MK-8666: formation of protein adducts in vitro from reactive acyl glucuronide and acyl CoA thioester. Chem Res Toxicol. 2020;33:191–201. https://doi.org/10.1021/acs.chemrestox.9b00226

    Article  CAS  PubMed  Google Scholar 

  57. Knihinicki RD, Williams KM, Day RO. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs—1: In vitro studies of ibuprofen and flurbiprofen. Biochem Pharm. 1989;15:4389–95. https://doi.org/10.1016/0006-2952(89)90647-3

    Article  Google Scholar 

  58. Knadler MP, Hall SD. Stereoselective arylpropionyl-CoA thioester formation in vitro. Chirality. 1990;2:67–73. https://doi.org/10.1002/chir.530020202

    Article  CAS  PubMed  Google Scholar 

  59. Li C, Benet LZ, Grillo MP. Enantioselective covalent binding of 2-phenylpropionic acid to protein in vitro in rat hepatocytes. Chem Res Toxicol. 2003;15:1480–7. https://doi.org/10.1021/tx025600l

    Article  CAS  Google Scholar 

  60. Li C, Grillo MP, Benet LZ. In vivo mechanistic studies on the metabolic activation of 2-phenylpropionic acid in rat. J Pharm Exp Ther. 2003;305:250–6. https://doi.org/10.1124/jpet.102.043174

    Article  CAS  Google Scholar 

  61. Knights KM, Addinall TF, Roberts BJ. Enhanced chiral inversion of R-ibuprofen in liver from rats treated with clofibric acid. Biochem Pharm. 1991;41:1775–7. https://doi.org/10.1016/0006-2952(91)90184-7

    Article  CAS  PubMed  Google Scholar 

  62. Li C, Grillo MP, Badagnani I, Fife KL, Benet LZ. Differential effects of fibrates on the metabolic activation of 2-phenylpropionic acid in rats. Drug Metab Dispos. 2008;36:682–7. https://doi.org/10.1124/dmd.107.017764

    Article  CAS  PubMed  Google Scholar 

  63. Baillie TA. Chemically reactive metabolites in drug discovery and development. In: Lee JS, Obach RS, Fisher MB, editors. Drug metabolizing enzymes: cytochrome p450 and other enzymes in drug discovery and development. Lausanne: Fontis Media; 2003. p. 147–54.

    Chapter  Google Scholar 

  64. Baillie TA. Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol. 2008;21:129–37. https://doi.org/10.1021/tx7002273

    Article  PubMed  Google Scholar 

  65. Baillie TA. Metabolic Activation and Associated Drug Toxicity. In: Lee PW, Aizawa H, Gan LL, Prakash C, Zhong D, editors. Handbook of metabolic pathways of xenobiotics, 1st ed. Chichester, UK: John Wiley & Sons, Ltd.; 2014. p. 303–20.

    Google Scholar 

  66. Trub AG, Hirschey MD. Reactive acyl-CoA species (RACS) modify proteins and induce carbon stress. Trends Biochem Sci. 2018;43:369–76. https://doi.org/10.1016/j.tibs.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Grillo.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grillo, M.P., Li, C. & Benet, L.Z. Acyl-CoA thioesters as chemically-reactive intermediates of carboxylic acid-containing drugs. Med Chem Res 32, 2058–2070 (2023). https://doi.org/10.1007/s00044-023-03144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03144-5

Keywords

Navigation